2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sodium-Glucose Cotransporter-2 (SGLT2) Inhibitors: A Clinician’s Guide

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This comprehensive review covers the historical background, physiology, application in type 2 diabetes, novel uses, cardiovascular benefits, side effects and contraindications of sodium-glucose cotransporter-2 (SGLT2) inhibitors. SGLT2 inhibitors are an insulin-independent class of oral antihyperglycemic medication that clinicians use in the treatment of type 2 diabetes. Multiple landmark clinical trials support the effectiveness of SGLT2 inhibitors in reducing blood glucose levels, but it is important to understand when to properly utilize them. SGLT2 inhibitors are the most beneficial as an adjunct medication in addition to metformin in patients with a history of cardiovascular or renal disease who need further hemoglobin A1c reduction. The novel mechanism of action also demands clinicians be aware of the side effects not typically experienced with other oral antihyperglycemic drugs, such as genital tract infections, lower leg amputations, electrolyte disturbances and bone fractures. On top of their benefits in type 2 diabetes, novel uses for SGLT2 inhibitors are being uncovered. Diabetic patients with non-alcoholic fatty liver disease, who are at an increased risk of cirrhosis and hepatocellular carcinoma, experience a clinically significant reduction in serum alanine aminotransferase levels. SGLT2 inhibitors are also effective at lowering body weight in obese individuals and decreasing systolic blood pressure. Dual SGLT1/SGLT2 inhibitors are currently being investigated as possibly the first oral medication for type 1 diabetes.

          Related collections

          Most cited references89

          • Record: found
          • Abstract: found
          • Article: not found

          The SLC2 (GLUT) family of membrane transporters.

          GLUT proteins are encoded by the SLC2 genes and are members of the major facilitator superfamily of membrane transporters. Fourteen GLUT proteins are expressed in the human and they are categorized into three classes based on sequence similarity. All GLUTs appear to transport hexoses or polyols when expressed ectopically, but the primary physiological substrates for several of the GLUTs remain uncertain. GLUTs 1-5 are the most thoroughly studied and all have well established roles as glucose and/or fructose transporters in various tissues and cell types. The GLUT proteins are comprised of ∼500 amino acid residues, possess a single N-linked oligosaccharide, and have 12 membrane-spanning domains. In this review we briefly describe the major characteristics of the 14 GLUT family members. Copyright © 2012 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture.

            The authors conducted a systematic review of published data on the association between diabetes mellitus and fracture. The authors searched MEDLINE through June 2006 and examined the reference lists of pertinent articles (limited to studies in humans). Summary relative risks and 95% confidence intervals were calculated with a random-effects model. The 16 eligible studies (two case-control studies and 14 cohort studies) included 836,941 participants and 139,531 incident cases of fracture. Type 2 diabetes was associated with an increased risk of hip fracture in both men (summary relative risk (RR) = 2.8, 95% confidence interval (CI): 1.2, 6.6) and women (summary RR = 2.1, 95% CI: 1.6, 2.7). Results were consistent between studies of men and women and between studies conducted in the United States and Europe. The association between type of diabetes and hip fracture incidence was stronger for type 1 diabetes (summary RR = 6.3, 95% CI: 2.6, 15.1) than for type 2 diabetes (summary RR = 1.7, 95% CI: 1.3, 2.2). Type 2 diabetes was weakly associated with fractures at other sites, and most effect estimates were not statistically significant. These findings strongly support an association between both type 1 and type 2 diabetes and increased risk of hip fracture in men and women.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              SGLT2 inhibitors and mechanisms of cardiovascular benefit: a state-of-the-art review

              Sodium-glucose cotransporter (SGLT)2 inhibitors have been demonstrated to reduce cardiovascular events, particularly heart failure, in cardiovascular outcome trials. Here, we review the proposed mechanistic underpinnings of this benefit. Specifically, we focus on the role of SGLT2 inhibitors in optimising ventricular loading conditions through their effect on diuresis and natriuresis, in addition to reducing afterload and improving vascular structure and function. Further insights into the role of SGLT2 inhibition in myocardial metabolism and substrate utilisation are outlined. Finally, we discuss two emerging themes: how SGLT2 inhibitors may regulate Na+/H+ exchange at the level of the heart and kidney and how they may modulate adipokine production. The mechanistic discussion is placed in the context of completed and ongoing trials of SGLT2 inhibitors in the prevention and treatment of heart failure in individuals with and without diabetes.
                Bookmark

                Author and article information

                Journal
                Diabetes Metab Syndr Obes
                Diabetes Metab Syndr Obes
                DMSO
                dmso
                Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy
                Dove
                1178-7007
                14 October 2019
                2019
                : 12
                : 2125-2136
                Affiliations
                [1 ]Alabama College of Osteopathic Medicine , Dothan, AL, USA
                Author notes
                Correspondence: Bryce C Simes Alabama College of Osteopathic Medicine , 445 Health Sciences Blvd., Dothan, AL36303, USATel +1 205 904-504-8897Fax +1 205 334-699-2268 Email simesbc@acom.edu
                Author information
                http://orcid.org/0000-0003-3652-6955
                http://orcid.org/0000-0001-7040-5650
                Article
                212003
                10.2147/DMSO.S212003
                6799898
                31686884
                da238a7f-6da5-48b5-9b75-4774a16a38d4
                © 2019 Simes and MacGregor.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 15 May 2019
                : 11 September 2019
                Page count
                Tables: 1, References: 131, Pages: 12
                Categories
                Review

                Endocrinology & Diabetes
                sglt2 inhibitors,type 2 diabetes,canagliflozin,empagliflozin,dapagliflozin,ertugliflozin

                Comments

                Comment on this article