Blog
About

9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A review of unsupervised feature learning and deep learning for time-series modeling

      , ,

      Pattern Recognition Letters

      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 70

          • Record: found
          • Abstract: not found
          • Article: not found

          Long Short-Term Memory

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reducing the dimensionality of data with neural networks.

            High-dimensional data can be converted to low-dimensional codes by training a multilayer neural network with a small central layer to reconstruct high-dimensional input vectors. Gradient descent can be used for fine-tuning the weights in such "autoencoder" networks, but this works well only if the initial weights are close to a good solution. We describe an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A fast learning algorithm for deep belief nets.

              We show how to use "complementary priors" to eliminate the explaining-away effects that make inference difficult in densely connected belief nets that have many hidden layers. Using complementary priors, we derive a fast, greedy algorithm that can learn deep, directed belief networks one layer at a time, provided the top two layers form an undirected associative memory. The fast, greedy algorithm is used to initialize a slower learning procedure that fine-tunes the weights using a contrastive version of the wake-sleep algorithm. After fine-tuning, a network with three hidden layers forms a very good generative model of the joint distribution of handwritten digit images and their labels. This generative model gives better digit classification than the best discriminative learning algorithms. The low-dimensional manifolds on which the digits lie are modeled by long ravines in the free-energy landscape of the top-level associative memory, and it is easy to explore these ravines by using the directed connections to display what the associative memory has in mind.
                Bookmark

                Author and article information

                Journal
                Pattern Recognition Letters
                Pattern Recognition Letters
                Elsevier BV
                01678655
                June 2014
                June 2014
                : 42
                :
                : 11-24
                10.1016/j.patrec.2014.01.008
                © 2014

                Comments

                Comment on this article