13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Intraspecific trait variation and trade-offs within and across populations of a toxic dinoflagellate

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: not found
          • Article: not found

          A review of harmful algal blooms and their apparent global increase*

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gene flow and the geographic structure of natural populations

            M Slatkin (1987)
            There is abundant geographic variation in both morphology and gene frequency in most species. The extent of geographic variation results from a balance of forces tending to produce local genetic differentiation and forces tending to produce genetic homogeneity. Mutation, genetic drift due to finite population size, and natural selection favoring adaptations to local environmental conditions will all lead to the genetic differentiation of local populations, and the movement of gametes, individuals, and even entire populations--collectively called gene flow--will oppose that differentiation. Gene flow may either constrain evolution by preventing adaptation to local conditions or promote evolution by spreading new genes and combinations of genes throughout a species' range. Several methods are available for estimating the amount of gene flow. Direct methods monitor ongoing gene flow, and indirect methods use spatial distributions of gene frequencies to infer past gene flow. Applications of these methods show that species differ widely in the gene flow that they experience. Of particular interest are those species for which direct methods indicate little current gene flow but indirect methods indicate much higher levels of gene flow in the recent past. Such species probably have undergone large-scale demographic changes relatively frequently.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Climate change: a catalyst for global expansion of harmful cyanobacterial blooms.

              Cyanobacteria are the Earth's oldest known oxygen-evolving photosynthetic microorganisms, and they have had major impacts on shaping our current atmosphere and biosphere. Their long evolutionary history has enabled cyanobacteria to develop survival strategies and persist as important primary producers during numerous geochemical and climatic changes that have taken place on Earth during the past 3.5 billion years. Today, some cyanobacterial species form massive surface growths or 'blooms' that produce toxins, cause oxygen depletion and alter food webs, posing a major threat to drinking and irrigation water supplies, fishing and recreational use of surface waters worldwide. These harmful cyanobacteria can take advantage of anthropogenically induced nutrient over-enrichment (eutrophication), and hydrologic modifications (water withdrawal, reservoir construction). Here, we review recent studies revealing that regional and global climatic change may benefit various species of harmful cyanobacteria by increasing their growth rates, dominance, persistence, geographic distributions and activity. Future climatic change scenarios predict rising temperatures, enhanced vertical stratification of aquatic ecosystems, and alterations in seasonal and interannual weather patterns (including droughts, storms, floods); these changes all favour harmful cyanobacterial blooms in eutrophic waters. Therefore, current mitigation and water management strategies, which are largely based on nutrient input and hydrologic controls, must also accommodate the environmental effects of global warming. © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd.
                Bookmark

                Author and article information

                Journal
                Ecology Letters
                Ecol Lett
                Wiley
                1461023X
                October 2018
                October 2018
                August 16 2018
                : 21
                : 10
                : 1561-1571
                Affiliations
                [1 ]Department of Aquatic Ecology; Netherlands Institute of Ecology (NIOO-KNAW); Droevendaalsesteeg 10 6708 PB Wageningen The Netherlands
                [2 ]Department of Ecological Chemistry; Alfred Wegener Institute (AWI); Helmholtz Centre for Polar and Marine Research; Am Handelshafen 12 27570 Bremerhaven Germany
                [3 ]Helmholtz-Institut für Funktionelle Marine Biodiversität (HIFMB); Ammerländer Heerstraße 231 23129 Oldenburg Germany
                [4 ]SYKE Marine Research Laboratory; Agnes Sjöbergin katu 2 FI-00790 Helsinki Finland
                Article
                10.1111/ele.13138
                30117252
                da2dbe74-367f-44c8-8fb0-a325bc561d1a
                © 2018

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article