48
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Amyloid imaging in cognitively normal individuals, at-risk populations and preclinical Alzheimer's disease

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent developments of PET amyloid ligands have made it possible to visualize the presence of Aβ deposition in the brain of living participants and to assess the consequences especially in individuals with no objective sign of cognitive deficits. The present review will focus on amyloid imaging in cognitively normal elderly, asymptomatic at-risk populations, and individuals with subjective cognitive decline. It will cover the prevalence of amyloid-positive cases amongst cognitively normal elderly, the influence of risk factors for AD, the relationships to cognition, atrophy and prognosis, longitudinal amyloid imaging and ethical aspects related to amyloid imaging in cognitively normal individuals. Almost ten years of research have led to a few consensual and relatively consistent findings: some cognitively normal elderly have Aβ deposition in their brain, the prevalence of amyloid-positive cases increases in at-risk populations, the prognosis for these individuals is worse than for those with no Aβ deposition, and significant increase in Aβ deposition over time is detectable in cognitively normal elderly. More inconsistent findings are still under debate; these include the relationship between Aβ deposition and cognition and brain volume, the sequence and cause-to-effect relations between the different AD biomarkers, and the individual outcome associated with an amyloid positive versus negative scan. Preclinical amyloid imaging also raises important ethical issues. While amyloid imaging is definitely useful to understand the role of Aβ in early stages, to define at-risk populations for research or for clinical trial, and to assess the effects of anti-amyloid treatments, we are not ready yet to translate research results into clinical practice and policy. More researches are needed to determine which information to disclose from an individual amyloid imaging scan, the way of disclosing such information and the impact on individuals and on society.

          Highlights

          • Ten to thirty percent of cognitively normal elderly have Aβ deposition in their brain

          • The prognosis for these individuals is worse than for those with no Aβ deposition

          • Significant increase in Aβ deposition over time is detectable in normal elderly

          • Aβ deposition is poorly related to cognitive performance and brain volume

          • The individual outcome associated with an amyloid positive scan is unclear

          Related collections

          Most cited references85

          • Record: found
          • Abstract: found
          • Article: not found

          Frequent amyloid deposition without significant cognitive impairment among the elderly.

          To characterize the prevalence of amyloid deposition in a clinically unimpaired elderly population, as assessed by Pittsburgh Compound B (PiB) positron emission tomography (PET) imaging, and its relationship to cognitive function, measured with a battery of neuropsychological tests. Subjects underwent cognitive testing and PiB PET imaging (15 mCi for 90 minutes with an ECAT HR+ scanner). Logan graphical analysis was applied to estimate regional PiB retention distribution volume, normalized to a cerebellar reference region volume, to yield distribution volume ratios (DVRs). University medical center. From a community-based sample of volunteers, 43 participants aged 65 to 88 years who did not meet diagnostic criteria for Alzheimer disease or mild cognitive impairment were included. Regional PiB retention and cognitive test performance. Of 43 clinically unimpaired elderly persons imaged, 9 (21%) showed evidence of early amyloid deposition in at least 1 brain area using an objectively determined DVR cutoff. Demographic characteristics did not differ significantly between amyloid-positive and amyloid-negative participants, and neurocognitive performance was not significantly worse among amyloid-positive compared with amyloid-negative participants. Amyloid deposition can be identified among cognitively normal elderly persons during life, and the prevalence of asymptomatic amyloid deposition may be similar to that of symptomatic amyloid deposition. In this group of participants without clinically significant impairment, amyloid deposition was not associated with worse cognitive function, suggesting that an elderly person with a significant amyloid burden can remain cognitively normal. However, this finding is based on relatively small numbers and needs to be replicated in larger cohorts. Longitudinal follow-up of these subjects will be required to support the potential of PiB imaging to identify preclinical Alzheimer disease, or, alternatively, to show that amyloid deposition is not sufficient to cause Alzheimer disease within some specified period.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Imaging beta-amyloid burden in aging and dementia.

            To compare brain beta-amyloid (Abeta) burden measured with [(11)C]Pittsburgh Compound B (PIB) PET in normal aging, Alzheimer disease (AD), and other dementias. Thirty-three subjects with dementia (17 AD, 10 dementia with Lewy bodies [DLB], 6 frontotemporal dementia [FTD]), 9 subjects with mild cognitive impairment (MCI), and 27 age-matched healthy control subjects (HCs) were studied. Abeta burden was quantified using PIB distribution volume ratio. Cortical PIB binding was markedly elevated in every AD subject regardless of disease severity, generally lower and more variable in DLB, and absent in FTD, whereas subjects with MCI presented either an "AD-like" (60%) or normal pattern. Binding was greatest in the precuneus/posterior cingulate, frontal cortex, and caudate nuclei, followed by lateral temporal and parietal cortex. Six HCs (22%) showed cortical uptake despite normal neuropsychological scores. PIB binding did not correlate with dementia severity in AD or DLB but was higher in subjects with an APOE-epsilon4 allele. In DLB, binding correlated inversely with the interval from onset of cognitive impairment to diagnosis. Pittsburgh Compound B PET findings match histopathologic reports of beta-amyloid (Abeta) distribution in aging and dementia. Noninvasive longitudinal studies to better understand the role of amyloid deposition in the course of neurodegeneration and to determine if Abeta deposition in nondemented subjects is preclinical AD are now feasible. Our findings also suggest that Abeta may influence the development of dementia with Lewy bodies, and therefore strategies to reduce Abeta may benefit this condition.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Beta-amyloid imaging and memory in non-demented individuals: evidence for preclinical Alzheimer's disease.

              Beta-amyloid (Abeta) deposition is pathognomic for Alzheimer's disease (AD), but may occur in normal elderly people without apparent cognitive effect. Episodic memory impairment is an early and prominent sign of AD, but its relationship with Abeta burden in non-demented persons and in AD patients is unclear. We examined this relationship using 11C-PIB-PET as a quantitative marker of Abeta burden in vivo in healthy ageing (HA), mild cognitive impairment (MCI) and AD. Thirty-one AD, 33 MCI and 32 HA participants completed neuropsychological assessment and a 11C-PIB-PET brain scan. Multiple linear regression analyses were conducted relating episodic memory performance and other cognitive functions to Abeta burden. Ninety-seven percent of AD, 61% of MCI and 22% of HA cases had increased cortical PIB binding, indicating the presence of Abeta plaques. There was a strong relationship between impaired episodic memory performance and PIB binding, both in MCI and HA. This relationship was weaker in AD and less robust for non-memory cognitive domains. Abeta deposition in the asymptomatic elderly is associated with episodic memory impairment. This finding, together with the strong relationship between PIB binding and the severity of memory impairment in MCI, suggests that individuals with increased cortical PIB binding are on the path to Alzheimer's disease. The data also suggests that early intervention trials for AD targeted to non-demented individuals with cerebral Abeta deposition are warranted.
                Bookmark

                Author and article information

                Contributors
                Journal
                Neuroimage (Amst)
                Neuroimage (Amst)
                NeuroImage : Clinical
                Elsevier
                2213-1582
                5 March 2013
                5 March 2013
                2013
                : 2
                : 356-365
                Affiliations
                [a ]INSERM, U1077 Caen, France
                [b ]Université de Caen Basse-Normandie, UMR-S1077, Caen, France
                [c ]Ecole Pratique des Hautes Etudes, UMR-S1077, Caen, France
                [d ]CHU de Caen, U1077 Caen, France
                [e ]CHU de Caen, Service de Neurologie, Caen, France
                [f ]Laboratory for Cognitive Neurology, Department of Neurosciences, University of Leuven, Belgium
                [g ]Neurology Department, University Hospitals Leuven, Belgium
                [h ]Alzheimer Research Centre KU Leuven, Leuven Institute of Neuroscience and Disease, University of Leuven, Belgium
                Author notes
                [* ]Corresponding author at: Unité de Recherche U1077, Centre Cyceron, Bd H. Becquerel, BP 5229, 14074 Caen Cedex, France. Tel.: + 33 2 31 47 01 73; fax: + 33 2 31 47 02 75. chetelat@ 123456cyceron.fr
                Article
                S2213-1582(13)00021-1
                10.1016/j.nicl.2013.02.006
                3777672
                24179789
                da372fcf-c501-4fa6-8a51-0556ea00aba5
                © 2013 The Authors

                This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike License, which permits non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 13 December 2012
                : 10 February 2013
                : 23 February 2013
                Categories
                Review Article

                amyloid pet imaging,cognitively normal elderly,preclinical alzheimer's disease,subjective cognitive decline,apoe4,longitudinal studies

                Comments

                Comment on this article