+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Accuracy of forced oscillation technique to assess lung function in geriatric COPD population

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          Performing lung function test in geriatric patients has never been an easy task. With well-established evidence indicating impaired small airway function and air trapping in patients with geriatric COPD, utilizing forced oscillation technique (FOT) as a supplementary tool may aid in the assessment of lung function in this population.


          To study the use of FOT in the assessment of airflow limitation and air trapping in geriatric COPD patients.

          Study design

          A cross-sectional study in a public hospital in Hong Kong. ID: NCT01553812.


          Geriatric patients who had spirometry-diagnosed COPD were recruited, with both FOT and plethysmography performed. “Resistance” and “reactance” FOT parameters were compared to plethysmography for the assessment of air trapping and airflow limitation.


          In total, 158 COPD subjects with a mean age of 71.9±0.7 years and percentage of forced expiratory volume in 1 second of 53.4±1.7 L were recruited. FOT values had a good correlation ( r=0.4–0.7) to spirometric data. In general, X values (reactance) were better than R values (resistance), showing a higher correlation with spirometric data in airflow limitation ( r=0.07–0.49 vs 0.61–0.67), small airway ( r=0.05–0.48 vs 0.56–0.65), and lung volume ( r=0.12–0.29 vs 0.43–0.49). In addition, resonance frequency (Fres) and frequency dependence (FDep) could well identify the severe type (percentage of forced expiratory volume in 1 second <50%) of COPD with high sensitivity (0.76, 0.71) and specificity (0.72, 0.64) (area under the curve: 0.8 and 0.77, respectively). Moreover, X values could stratify different severities of air trapping, while R values could not.


          FOT may act as a simple and accurate tool in the assessment of severity of airflow limitation, small and central airway function, and air trapping in patients with geriatric COPD who have difficulties performing conventional lung function test. Moreover, reactance parameters were better than resistance parameters in correlation with air trapping.

          Related collections

          Most cited references 47

          • Record: found
          • Abstract: found
          • Article: not found

          The forced oscillation technique in clinical practice: methodology, recommendations and future developments.

           ,  K Desager,  E Oostveen (2003)
          The forced oscillation technique (FOT) is a noninvasive method with which to measure respiratory mechanics. FOT employs small-amplitude pressure oscillations superimposed on the normal breathing and therefore has the advantage over conventional lung function techniques that it does not require the performance of respiratory manoeuvres. The present European Respiratory Society Task Force Report describes the basic principle of the technique and gives guidelines for the application and interpretation of FOT as a routine lung function test in the clinical setting, for both adult and paediatric populations. FOT data, especially those measured at the lower frequencies, are sensitive to airway obstruction, but do not discriminate between obstructive and restrictive lung disorders. There is no consensus regarding the sensitivity of FOT for bronchodilation testing in adults. Values of respiratory resistance have proved sensitive to bronchodilation in children, although the reported cutoff levels remain to be confirmed in future studies. Forced oscillation technique is a reliable method in the assessment of bronchial hyperresponsiveness in adults and children. Moreover, in contrast with spirometry where a deep inspiration is needed, forced oscillation technique does not modify the airway smooth muscle tone. Forced oscillation technique has been shown to be as sensitive as spirometry in detecting impairments of lung function due to smoking or exposure to occupational hazards. Together with the minimal requirement for the subject's cooperation, this makes forced oscillation technique an ideal lung function test for epidemiological and field studies. Novel applications of forced oscillation technique in the clinical setting include the monitoring of respiratory mechanics during mechanical ventilation and sleep.
            • Record: found
            • Abstract: found
            • Article: not found

            Detection of expiratory flow limitation in COPD using the forced oscillation technique.

            Expiratory flow limitation (EFL) during tidal breathing is a major determinant of dynamic hyperinflation and exercise limitation in chronic obstructive pulmonary disease (COPD). Current methods of detecting this are either invasive or unsuited to following changes breath-by-breath. It was hypothesised that tidal flow limitation would substantially reduce the total respiratory system reactance (Xrs) during expiration, and that this reduction could be used to reliably detect if EFL was present. To test this, 5-Hz forced oscillations were applied at the mouth in seven healthy subjects and 15 COPD patients (mean +/- sD forced expiratory volume in one second was 36.8 +/- 11.5% predicted) during quiet breathing. COPD breaths were analysed (n=206) and classified as flow-limited if flow decreased as alveolar pressure increased, indeterminate if flow decreased at constant alveolar pressure, or nonflow-limited. Of these, 85 breaths were flow-limited, 80 were not and 41 were indeterminate. Among other indices, mean inspiratory minus mean expiratory Xrs (deltaXrs) and minimum expiratory Xrs (Xexp,min) identified flow-limited breaths with 100% specificity and sensitivity using a threshold between 2.53-3.12 cmH2O x s x L(-1) (deltaXrs) and -7.38- -6.76 cmH2O x s x L(-1) (Xexp,min) representing 6.0% and 3.9% of the total range of values respectively. No flow-limited breaths were seen in the normal subjects by either method. Within-breath respiratory system reactance provides an accurate, reliable and noninvasive technique to detect expiratory flow limitation in patients with chronic obstructive pulmonary disease.
              • Record: found
              • Abstract: found
              • Article: not found

              High-dose N-acetylcysteine in stable COPD: the 1-year, double-blind, randomized, placebo-controlled HIACE study.

              The mucolytic and antioxidant effects of N-acetylcysteine (NAC) may have great value in COPD treatment. However, beneficial effects have not been confirmed in clinical studies, possibly due to insufficient NAC doses and/or inadequate outcome parameters used. The objective of this study was to investigate high-dose NAC plus usual therapy in Chinese patients with stable COPD. The 1-year HIACE (The Effect of High Dose N-acetylcysteine on Air Trapping and Airway Resistance of Chronic Obstructive Pulmonary Disease-a Double-blinded, Randomized, Placebo-controlled Trial) double-blind trial conducted in Kwong Wah Hospital, Hong Kong, randomized eligible patients aged 50 to 80 years with stable COPD to NAC 600 mg bid or placebo after 4-week run-in. Lung function parameters, symptoms, modified Medical Research Council (mMRC) dyspnea and St. George's Respiratory Questionnaire (SGRQ) scores, 6-min walking distance (6MWD), and exacerbation and admission rates were measured at baseline and every 16 weeks for 1 year. Of 133 patients screened, 120 were eligible (93.2% men; mean age, 70.8±0.74 years; %FEV1 53.9±2.0%). Baseline characteristics were similar in the two groups. At 1 year, there was a significant improvement in forced expiratory flow 25% to 75% (P=.037) and forced oscillation technique, a significant reduction in exacerbation frequency (0.96 times/y vs 1.71 times/y, P=.019), and a tendency toward reduction in admission rate (0.5 times/y vs 0.8 times/y, P=.196) with NAC vs placebo. There were no significant between-group differences in mMRC dypsnea score, SGRQ score, and 6MWD. No major adverse effects were reported. In this study, 1-year treatment with high-dose NAC resulted in significantly improved small airways function and decreased exacerbation frequency in patients with stable COPD.; No.: NCT01136239; URL:

                Author and article information

                Int J Chron Obstruct Pulmon Dis
                Int J Chron Obstruct Pulmon Dis
                International Journal of COPD
                International Journal of Chronic Obstructive Pulmonary Disease
                Dove Medical Press
                26 May 2016
                : 11
                : 1105-1118
                [1 ]Medical and Geriatric Department, Respiratory Unit, Kwong Wah Hospital, Hong Kong, People’s Republic of China
                [2 ]Department of Tuberculosis and Chest Unit, Wong Tai Sin Hospital, Hong Kong, People’s Republic of China
                Author notes
                Correspondence: Hoi Nam Tse, Medical and Geriatric Department, Respiratory Unit, Kwong Wah Hospital, 25 Waterloo Road, Yau Ma Tei, Hong Kong 852, People’s Republic of China, Tel +852 23 322 311, Email drhoinam@
                © 2016 Tse et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Original Research

                Respiratory medicine

                chronic obstructive pulmonary disease, airflow limitation, air trapping


                Comment on this article