16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Well-Dispersed High-Loading Pt Nanoparticles Supported by Shell−Core Nanostructured Carbon for Methanol Electrooxidation

      , , , ,
      Langmuir
      American Chemical Society (ACS)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Shell-core nanostructured carbon materials with a nitrogen-doped graphitic layer as a shell and pristine carbon black particle as a core were synthesized by carbonizing the hybrid materials containing in situ polymerized aniline onto carbon black. In an N-doped carbon layer, the nitrogen atoms substitute carbon atoms at the edge and interior of the graphene structure to form pyridinic N and quaternary N structures, respectively. As a result, the carbon structure becomes more compact, showing curvatures and disorder in the graphene stacking. In comparison with nondoped carbon, the N-doped one was proved to be a suitable supporting material to synthesize high-loading Pt catalysts (up to 60 wt %) with a more uniform size distribution and stronger metal-support interactions due to its high electrochemically accessible surface area, richness of disorder and defects, and high electron density. Moreover, the more rapid charge-transfer rates over the N-doped carbon material are evidenced by the high crystallinity of the graphitic shell layer with nitrogen doping as well as the low charge-transfer resistance at the electrolyte/electrode interface. Beneficial roles of nitrogen doping can be found to enhance the CO tolerance of Pt catalysts. Accordingly, an improved performance in methanol oxidation was achieved on a high-loading Pt catalyst supported by N-doped carbon. The enhanced catalytic properties were extensively discussed based on mass activity (Pt utilization) and intrinsic activity (charge-transfer rate). Therefore, N-doped carbon layers present many advantages over nondoped ones and would emerge as an interesting supporting carbon material for fuel cell electrocatalysts.

          Related collections

          Author and article information

          Journal
          Langmuir
          Langmuir
          American Chemical Society (ACS)
          0743-7463
          1520-5827
          April 2008
          April 2008
          : 24
          : 7
          : 3566-3575
          Article
          10.1021/la7029278
          18294008
          da57406e-f09c-4cde-a7cb-f59a9b491b6c
          © 2008
          History

          Comments

          Comment on this article