5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Anterior thalamic excitation and feed-forward inhibition of presubicular neurons projecting to medial entorhinal cortex

      Preprint

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The presubiculum contains head direction cells that are crucial for spatial navigation. Here, we examined the connectivity and strengths of thalamic inputs to presubicular layer 3 neurons projecting to the medial entorhinal cortex in the mouse. We recorded pairs of projection neurons and interneurons while optogenetically stimulating afferent fibers from the anterior thalamic nuclei (ATN). Thalamic input differentially affects presubicular neurons: layer 3 pyramidal neurons and fast-spiking parvalbumin expressing (PV) interneurons are directly and monosynaptically activated, with depressing dynamics, while somatostatin (SST) expressing interneurons are indirectly excited, during repetitive ATN activity. This arrangement ensures that the thalamic excitation of layer 3 cells is often followed by disynaptic inhibition. Feed-forward inhibition is largely mediated by PV interneurons which have a high probability of connection to presubicular pyramidal cells. Our data point to a specific role of presubicular microcircuits in shaping thalamic head-direction signals transmitted to medial entorhinal cortex: Short-latency PV cell activation may enforce temporally precise head direction tuning during fast turns. However, depression at ATN-PV synapses during repeated activation tends to facilitate pyramidal cell firing when head direction is maintained. Operations performed in presubicular layer 3 circuits seem well-adapted for spatial fine-tuning of head direction signals sent to the medial entorhinal cortex.

          Related collections

          Author and article information

          Journal
          bioRxiv
          January 04 2018
          Article
          10.1101/243022
          da5ab017-446b-46ba-841d-ce3d7ced016e
          © 2018
          History

          Molecular medicine,Neurosciences
          Molecular medicine, Neurosciences

          Comments

          Comment on this article