115
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Protection of BNT162b2 Vaccine Booster against Covid-19 in Israel

      research-article
      , M.Sc., , Ph.D. , , Ph.D., , M.Sc., , Ph.D., , B.Sc., , M.Sc., , M.D., , M.D., , Ph.D., , Ph.D.
      The New England Journal of Medicine
      Massachusetts Medical Society
      Keyword part (code): 18Keyword part (keyword): Infectious DiseaseKeyword part (code): 18_2Keyword part (keyword): VaccinesKeyword part (code): 18_6Keyword part (keyword): Viral InfectionsKeyword part (code): 18_12Keyword part (keyword): Coronavirus , 18, Infectious Disease, Keyword part (code): 18_2Keyword part (keyword): VaccinesKeyword part (code): 18_6Keyword part (keyword): Viral InfectionsKeyword part (code): 18_12Keyword part (keyword): Coronavirus , 18_2, Vaccines, 18_6, Viral Infections, 18_12, Coronavirus

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          On July 30, 2021, the administration of a third (booster) dose of the BNT162b2 messenger RNA vaccine (Pfizer–BioNTech) was approved in Israel for persons who were 60 years of age or older and who had received a second dose of vaccine at least 5 months earlier. Data are needed regarding the effect of the booster dose on the rate of confirmed coronavirus 2019 disease (Covid-19) and the rate of severe illness.

          Methods

          We extracted data for the period from July 30 through August 31, 2021, from the Israeli Ministry of Health database regarding 1,137,804 persons who were 60 years of age or older and had been fully vaccinated (i.e., had received two doses of BNT162b2) at least 5 months earlier. In the primary analysis, we compared the rate of confirmed Covid-19 and the rate of severe illness between those who had received a booster injection at least 12 days earlier (booster group) and those who had not received a booster injection (nonbooster group). In a secondary analysis, we evaluated the rate of infection 4 to 6 days after the booster dose as compared with the rate at least 12 days after the booster. In all the analyses, we used Poisson regression after adjusting for possible confounding factors.

          Results

          At least 12 days after the booster dose, the rate of confirmed infection was lower in the booster group than in the nonbooster group by a factor of 11.3 (95% confidence interval [CI], 10.4 to 12.3); the rate of severe illness was lower by a factor of 19.5 (95% CI, 12.9 to 29.5). In a secondary analysis, the rate of confirmed infection at least 12 days after vaccination was lower than the rate after 4 to 6 days by a factor of 5.4 (95% CI, 4.8 to 6.1).

          Conclusions

          In this study involving participants who were 60 years of age or older and had received two doses of the BNT162b2 vaccine at least 5 months earlier, we found that the rates of confirmed Covid-19 and severe illness were substantially lower among those who received a booster (third) dose of the BNT162b2 vaccine.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection

          Predictive models of immune protection from COVID-19 are urgently needed to identify correlates of protection to assist in the future deployment of vaccines. To address this, we analyzed the relationship between in vitro neutralization levels and the observed protection from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection using data from seven current vaccines and from convalescent cohorts. We estimated the neutralization level for 50% protection against detectable SARS-CoV-2 infection to be 20.2% of the mean convalescent level (95% confidence interval (CI) = 14.4-28.4%). The estimated neutralization level required for 50% protection from severe infection was significantly lower (3% of the mean convalescent level; 95% CI = 0.7-13%, P = 0.0004). Modeling of the decay of the neutralization titer over the first 250 d after immunization predicts that a significant loss in protection from SARS-CoV-2 infection will occur, although protection from severe disease should be largely retained. Neutralization titers against some SARS-CoV-2 variants of concern are reduced compared with the vaccine strain, and our model predicts the relationship between neutralization and efficacy against viral variants. Here, we show that neutralization level is highly predictive of immune protection, and provide an evidence-based model of SARS-CoV-2 immune protection that will assist in developing vaccine strategies to control the future trajectory of the pandemic.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Safety and Immunogenicity of Two RNA-Based Covid-19 Vaccine Candidates

            Abstract Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and the resulting disease, coronavirus disease 2019 (Covid-19), have spread to millions of persons worldwide. Multiple vaccine candidates are under development, but no vaccine is currently available. Interim safety and immunogenicity data about the vaccine candidate BNT162b1 in younger adults have been reported previously from trials in Germany and the United States. Methods In an ongoing, placebo-controlled, observer-blinded, dose-escalation, phase 1 trial conducted in the United States, we randomly assigned healthy adults 18 to 55 years of age and those 65 to 85 years of age to receive either placebo or one of two lipid nanoparticle–formulated, nucleoside-modified RNA vaccine candidates: BNT162b1, which encodes a secreted trimerized SARS-CoV-2 receptor–binding domain; or BNT162b2, which encodes a membrane-anchored SARS-CoV-2 full-length spike, stabilized in the prefusion conformation. The primary outcome was safety (e.g., local and systemic reactions and adverse events); immunogenicity was a secondary outcome. Trial groups were defined according to vaccine candidate, age of the participants, and vaccine dose level (10 μg, 20 μg, 30 μg, and 100 μg). In all groups but one, participants received two doses, with a 21-day interval between doses; in one group (100 μg of BNT162b1), participants received one dose. Results A total of 195 participants underwent randomization. In each of 13 groups of 15 participants, 12 participants received vaccine and 3 received placebo. BNT162b2 was associated with a lower incidence and severity of systemic reactions than BNT162b1, particularly in older adults. In both younger and older adults, the two vaccine candidates elicited similar dose-dependent SARS-CoV-2–neutralizing geometric mean titers, which were similar to or higher than the geometric mean titer of a panel of SARS-CoV-2 convalescent serum samples. Conclusions The safety and immunogenicity data from this U.S. phase 1 trial of two vaccine candidates in younger and older adults, added to earlier interim safety and immunogenicity data regarding BNT162b1 in younger adults from trials in Germany and the United States, support the selection of BNT162b2 for advancement to a pivotal phase 2–3 safety and efficacy evaluation. (Funded by BioNTech and Pfizer; ClinicalTrials.gov number, NCT04368728.)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Mass Vaccination Setting

              Abstract Background As mass vaccination campaigns against coronavirus disease 2019 (Covid-19) commence worldwide, vaccine effectiveness needs to be assessed for a range of outcomes across diverse populations in a noncontrolled setting. In this study, data from Israel’s largest health care organization were used to evaluate the effectiveness of the BNT162b2 mRNA vaccine. Methods All persons who were newly vaccinated during the period from December 20, 2020, to February 1, 2021, were matched to unvaccinated controls in a 1:1 ratio according to demographic and clinical characteristics. Study outcomes included documented infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), symptomatic Covid-19, Covid-19–related hospitalization, severe illness, and death. We estimated vaccine effectiveness for each outcome as one minus the risk ratio, using the Kaplan–Meier estimator. Results Each study group included 596,618 persons. Estimated vaccine effectiveness for the study outcomes at days 14 through 20 after the first dose and at 7 or more days after the second dose was as follows: for documented infection, 46% (95% confidence interval [CI], 40 to 51) and 92% (95% CI, 88 to 95); for symptomatic Covid-19, 57% (95% CI, 50 to 63) and 94% (95% CI, 87 to 98); for hospitalization, 74% (95% CI, 56 to 86) and 87% (95% CI, 55 to 100); and for severe disease, 62% (95% CI, 39 to 80) and 92% (95% CI, 75 to 100), respectively. Estimated effectiveness in preventing death from Covid-19 was 72% (95% CI, 19 to 100) for days 14 through 20 after the first dose. Estimated effectiveness in specific subpopulations assessed for documented infection and symptomatic Covid-19 was consistent across age groups, with potentially slightly lower effectiveness in persons with multiple coexisting conditions. Conclusions This study in a nationwide mass vaccination setting suggests that the BNT162b2 mRNA vaccine is effective for a wide range of Covid-19–related outcomes, a finding consistent with that of the randomized trial.
                Bookmark

                Author and article information

                Journal
                N Engl J Med
                N Engl J Med
                nejm
                The New England Journal of Medicine
                Massachusetts Medical Society
                0028-4793
                1533-4406
                15 September 2021
                : NEJMoa2114255
                Affiliations
                From the Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot (Y.M.B.-O., R.M.), Technion–Israel Institute of Technology, Haifa (Y.G.), Hebrew University of Jerusalem (M.M.) and Israel Ministry of Health (O.B., S.A.-P., N.A.), Jerusalem, the Biostatistical and Biomathematical Unit, Gertner Institute for Epidemiology and Health Policy Research, Sheba Medical Center, Ramat Gan (L.F., A.H.), KI Research Institute, Kfar Malal (N.K., B.M.), and the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (A.H.) — all in Israel.
                Author notes
                Address reprint requests to Dr. Goldberg at the Faculty of Industrial Engineering and Management, Technion–Israel Institute of Technology, Technion City, Haifa 3200003, Israel, or at yairgo@ 123456technion.ac.il .

                Mr. Bar-On, Dr. Goldberg, and Dr. Mandel and Drs. Milo and Huppert contributed equally to this article.

                Article
                NJ202109153851506
                10.1056/NEJMoa2114255
                8461568
                34525275
                da695c8a-422a-4834-80b2-c6eec5f22436
                Copyright © 2021 Massachusetts Medical Society. All rights reserved.

                This article is made available via the PMC Open Access Subset for unrestricted re-use, except commercial resale, and analyses in any form or by any means with acknowledgment of the original source. These permissions are granted for the duration of the Covid-19 pandemic or until revoked in writing. Upon expiration of these permissions, PMC is granted a license to make this article available via PMC and Europe PMC, subject to existing copyright protections.

                History
                Categories
                Original Article
                Custom metadata
                2021-09-15T17:00:00-04:00
                2021
                09
                15
                17
                00
                00
                -04:00

                Comments

                Comment on this article