18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Bisphenol A, Bisphenol S, and 4-Hydro​xyphenyl 4-Isopro​oxyphenyl​sulfone (BPSIP) in Urine and Blood of Cashiers

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background:

          Bisphenol A (BPA) is a high-production-volume chemical associated with a wide range of health outcomes in animal and human studies. BPA is used as a developer in thermal paper products, including cash register receipt paper; however, little is known about exposure of cashiers to BPA and alternative compounds in receipt paper.

          Objective:

          We determined whether handling receipt paper results in measurable absorption of BPA or the BPA alternatives bisphenol S (BPS) and 4-hydroxyphenyl 4-isoprooxyphenylsulfone (BPSIP).

          Methods:

          Cashiers (n = 77) and non-cashiers (n = 25) were recruited from the Raleigh–Durham–Chapel Hill region of North Carolina during 2011–2013. Receipts were analyzed for the presence of BPA or alternatives considered for use in thermal paper. In cashiers, total urine and serum BPA, BPS, and BPSIP levels in post-shift samples (collected ≤ 2 hr after completing a shift) were compared with pre-shift samples. Levels of these compounds in urine from cashiers were compared to levels in urine from non-cashiers.

          Results:

          Each receipt contained 1–2% by weight of the paper of BPA, BPS, or BPSIP. The post-shift geometric mean total urinary BPS concentration was significantly higher than the pre-shift mean in 33 cashiers who handled receipts containing BPS. The mean urine BPA concentrations in 31 cashiers who handled BPA receipts were as likely to decrease as to increase after a shift, but the mean post-shift concentrations were significantly higher than those in non-cashiers. BPSIP was detected more frequently in the urine of cashiers handling BPSIP receipts than in the urine of non-cashiers. Only a few cashiers had detectable levels of total BPA or BPS in serum, whereas BPSIP tended to be detected more frequently.

          Conclusions:

          Thermal receipt paper is a potential source of occupational exposure to BPA, BPS, and BPSIP.

          Citation:

          Thayer KA, Taylor KW, Garantziotis S, Schurman SH, Kissling GE, Hunt D, Herbert B, Church R, Jankowich R, Churchwell MI, Scheri RC, Birnbaum LS, Bucher JR. 2016. Bisphenol A, bisphenol S, and 4-hydro​xyphenyl 4-isopro​oxyphenyl​sulfone (BPSIP) in urine and blood of cashiers. Environ Health Perspect 124:437–444; http://dx.doi.org/10.1289/ehp.1409427

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Concentrations and profiles of bisphenol A and other bisphenol analogues in foodstuffs from the United States and their implications for human exposure.

          As the concern over the safety of bisphenol A (BPA) continues to grow, this compound is gradually being replaced, in industrial applications, with compounds such as bisphenol F (BPF) and bisphenol S (BPS). Occurrence of bisphenols, including BPA and BPS, has been reported in paper products and in environmental matrices. Information on the occurrence of bisphenols, other than BPA, in foodstuffs, however, is scarce. In this study, several bisphenol analogues, including BPA, BPF, and BPS, were analyzed in foodstuffs (N = 267) collected from Albany, NY, USA, using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Foodstuffs were divided into nine categories of beverages, dairy products, fats and oils, fish and seafood, cereals, meat and meat products, fruits, vegetables, and "others". Bisphenols were found in the majority (75%) of the food samples, and the total concentrations of bisphenols (ΣBPs: sum of eight bisphenols) were in the range of below the limit of quantification (LOQ) to 1130 ng/g fresh weight, with an overall mean value of 4.38 ng/g. The highest overall mean concentration of ΣBPs was found in the "others" category, which included condiments (preserved, ready-to-serve foods). A sample of mustard (dressing) and ginger, placed in the category of vegetables, contained the highest concentrations of 1130 ng/g for bisphenol F (BPF) and 237 ng/g for bisphenol P (BPP). Concentrations of BPs in beverages (mean = 0.341 ng/g) and fruits (0.698 ng/g) were low. The predominant bisphenol analogues found in foodstuffs were BPA and BPF, which accounted for 42 and 17% of the total BP concentrations, respectively. Canned foods contained higher concentrations of individual and total bisphenols in comparison to foods sold in glass, paper, or plastic containers. On the basis of measured concentrations and daily ingestion rates of foods, the daily dietary intakes of bisphenols (calculated from the mean concentration) were estimated to be 243, 142, 117, 63.6, and 58.6 ng/kg body weight (bw)/day for toddlers, infants, children, teenagers, and adults, respectively.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bisphenol S in urine from the United States and seven Asian countries: occurrence and human exposures.

            As concern regarding the toxic effects of bisphenol A (BPA) grows, BPA in many consumer products is gradually being replaced with compounds such as bisphenol S (BPS). Nevertheless, data on the occurrence of BPS in human specimens are limited. In this study, 315 urine samples, collected from the general populations in the United States, China, India, Japan, Korea, Kuwait, Malaysia, and Vietnam, were analyzed for the presence of total BPS (free plus conjugated) concentrations by high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). BPS was detected in 81% of the urine samples analyzed at concentrations ranging from below the limit of quantitation (LOQ; 0.02 ng/mL) to 21 ng/mL (geometric mean: 0.168 ng/mL). The urinary BPS concentration varied among countries, and the highest geometric mean concentration [1.18 ng/mLor 0.933 μg/g creatinine (Cre)] of BPS was found in urine samples from Japan, followed by the United States (0.299 ng/mL, 0.304 μg/g Cre), China (0.226 ng/mL, 0.223 μg/g Cre), Kuwait (0.172 ng/mL, 0.126 μg/g Cre), and Vietnam (0.160 ng/mL, 0.148 μg/g Cre). Median concentrations of BPS in urine samples from the Asian countries were 1 order of magnitude lower than the median concentrations reported earlier for BPA in the same set of samples, with the exception of samples from Japan. There were no significant differences in BPS concentrations between genders (male versus female), or among age groups (categorized as ≤ 19, 20-29, 30-39, 40-49, and ≥ 50 years), or races (Caucasian versus Asian). The daily intake (EDI) of BPS was estimated on the basis of urinary concentrations using a simple pharmacokinetic approach. The median EDI values of BPS in Japan, China, United States, Kuwait, Vietnam, Malaysia, India, and Korea were 1.67, 0.339, 0.316, 0.292, 0.217, 0.122, 0.084, and 0.023 μg/person, respectively. This is the first study to report the occurrence of BPS in human urine.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Occurrence of eight bisphenol analogues in indoor dust from the United States and several Asian countries: implications for human exposure.

              Bisphenol A has been reported to be a ubiquitous contaminant in indoor dust, and human exposure to this compound is well documented. Information on the occurrence of and human exposure to other bisphenol analogues is limited. In this study, eight bisphenol analogues, namely 2,2-bis(4-hydroxyphenyl)propane (BPA), 4,4'-(hexafluoroisopropylidene)diphenol (BPAF), 4,4'-(1-phenylethylidene)bisphenol (BPAP), 2,2-bis(4-hydroxyphenyl)butane (BPB), 4,4'-dihydroxydiphenylmethane (BPF), 4,4'-(1,4-phenylenediisopropylidene)bisphenol (BPP), 4,4'- sulfonyldiphenol (BPS), and 4,4'-cyclohexylidenebisphenol (BPZ), were determined in indoor dust samples (n = 156) collected from the United States (U.S.), China, Japan, and Korea. Samples were extracted by solid-liquid extraction, purified by automated solid phase extraction methods, and determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The total concentrations of bisphenols (∑BPs; sum of eight bisphenols) in dust were in the range of 0.026-111 μg/g (geometric mean: 2.29 μg/g). BPA, BPS, and BPF were the three major bisphenols, accounting for >98% of the total concentrations. Other bisphenol analogues were rare or not detected, with the exception of BPAF, which was found in 76% of the 41 samples collected in Korea (geometric mean: 0.0039 μg/g). The indoor dust samples from Korea contained the highest concentrations of both individual and total bisphenols. BPA concentrations in dust were compared among three microenvironments (house, office, and laboratory). The estimated median daily intake (EDI) of ∑BPs through dust ingestion in the U.S., China, Japan, and Korea was 12.6, 4.61, 15.8, and 18.6 ng/kg body weight (bw)/day, respectively, for toddlers and 1.72, 0.78, 2.65, and 3.13 ng/kg bw/day, respectively, for adults. This is the first report on the occurrence of bisphenols, other than BPA, in indoor dust.
                Bookmark

                Author and article information

                Journal
                Environ Health Perspect
                Environ. Health Perspect
                EHP
                Environmental Health Perspectives
                National Institute of Environmental Health Sciences
                0091-6765
                1552-9924
                25 August 2015
                April 2016
                : 124
                : 4
                : 437-444
                Affiliations
                [1 ]Division of the National Toxicology Program,
                [2 ]Clinical Research Unit, and
                [3 ]Biostatistics Branch, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
                [4 ]Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food & Drug Administration, Jefferson, Arkansas, USA
                [5 ]National Cancer Institute, NIH, DHHS, Research Triangle Park, North Carolina, USA
                Author notes
                []Address correspondence to K.A. Thayer, National Institute of Environmental Health Sciences (NIEHS), P.O. Box 12233, MD K2-04, Research Triangle Park, NC 27709 USA. Telephone: (919) 541-5021. E-mail: thayer@ 123456niehs.nih.gov
                Article
                ehp.1409427
                10.1289/ehp.1409427
                4824622
                26309242
                da69a2b3-4010-4db9-82cf-a6081288481a

                Publication of EHP lies in the public domain and is therefore without copyright. All text from EHP may be reprinted freely. Use of materials published in EHP should be acknowledged (for example, “Reproduced with permission from Environmental Health Perspectives”); pertinent reference information should be provided for the article from which the material was reproduced. Articles from EHP, especially the News section, may contain photographs or illustrations copyrighted by other commercial organizations or individuals that may not be used without obtaining prior approval from the holder of the copyright.

                History
                : 03 November 2014
                : 20 August 2015
                Categories
                Research

                Public health
                Public health

                Comments

                Comment on this article