22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Porcine Circoviruses and Xenotransplantation

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Allotransplantation and xenotransplantation may be associated with the transmission of pathogens from the donor to the recipient. Whereas in the case of allotransplantation the transmitted microorganisms and their pathogenic effect are well characterized, the possible influence of porcine microorganisms on humans is mostly unknown. Porcine circoviruses (PCVs) are common in pig breeds and they belong to porcine microorganisms that still have not been fully addressed in terms of evaluating the potential risk of xenotransplantation using pig cells, tissues, and organs. Two types of PCVs are known: porcine circovirus (PCV) 1 and PCV2. Whereas PCV1 is apathogenic in pigs, PCV2 may induce severe pig diseases. Although most pigs are subclinically infected, we do not know whether this infection impairs pig transplant functionality, particularly because PCV2 is immunosuppressive. In addition, vaccination against PCV2 is able to prevent diseases, but in most cases not transmission of the virus. Therefore, PCV2 has to be eliminated to obtain xenotransplants from uninfected healthy animals. Although there is evidence that PCV2 does not infect—at least immunocompetent—humans, animals should be screened using sensitive methods to ensure virus elimination by selection, Cesarean delivery, vaccination, or embryo transfer.

          Related collections

          Most cited references109

          • Record: found
          • Abstract: found
          • Article: not found

          Safety and efficacy of an attenuated vaccine against severe rotavirus gastroenteritis.

          The safety and efficacy of an attenuated G1P[8] human rotavirus (HRV) vaccine were tested in a randomized, double-blind, phase 3 trial. We studied 63,225 healthy infants from 11 Latin American countries and Finland who received two oral doses of either the HRV vaccine (31,673 infants) or placebo (31,552 infants) at approximately two months and four months of age. Severe gastroenteritis episodes were identified by active surveillance. The severity of disease was graded with the use of the 20-point Vesikari scale. Vaccine efficacy was evaluated in a subgroup of 20,169 infants (10,159 vaccinees and 10,010 placebo recipients). The efficacy of the vaccine against severe rotavirus gastroenteritis and against rotavirus-associated hospitalization was 85 percent (P<0.001 for the comparison with placebo) and reached 100 percent against more severe rotavirus gastroenteritis. Hospitalization for diarrhea of any cause was reduced by 42 percent (95 percent confidence interval, 29 to 53 percent; P<0.001). During the 31-day window after each dose, six vaccine recipients and seven placebo recipients had definite intussusception (difference in risk, -0.32 per 10,000 infants; 95 percent confidence interval, -2.91 to 2.18; P=0.78). Two oral doses of the live attenuated G1P[8] HRV vaccine were highly efficacious in protecting infants against severe rotavirus gastroenteritis, significantly reduced the rate of severe gastroenteritis from any cause, and were not associated with an increased risk of intussusception. (ClinicalTrials.gov numbers, NCT00139347 and NCT00263666.) Copyright 2006 Massachusetts Medical Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A Novel Porcine Circovirus Distantly Related to Known Circoviruses Is Associated with Porcine Dermatitis and Nephropathy Syndrome and Reproductive Failure

            Porcine circovirus-associated disease (PCVAD) is clinically manifested by postweaning multisystemic wasting syndrome (PMWS), respiratory and enteric disease, reproductive failure, and porcine dermatitis and nephropathy syndrome (PDNS). Porcine circovirus 2 (PCV2) is an essential component of PCVAD, although an etiologic role in PDNS is not well established. Here, a novel circovirus, designated porcine circovirus 3 (PCV3), was identified in sows that died acutely with PDNS-like clinical signs. The capsid and replicase proteins of PCV3 are only 37% and 55% identical to PCV2 and bat circoviruses, respectively. Aborted fetuses from sows with PDNS contained high levels of PCV3 (7.57 × 107genome copies/ml), and no other viruses were detected by PCR and metagenomic sequencing. Immunohistochemistry (IHC) analysis of sow tissue samples identified PCV3 antigen in skin, kidney, lung, and lymph node samples localized in typical PDNS lesions, including necrotizing vasculitis, glomerulonephritis, granulomatous lymphadenitis, and bronchointerstitial pneumonia. Further study of archived PDNS tissue samples that were negative for PCV2 by IHC analysis identified 45 of 48 that were PCV3 positive by quantitative PCR (qPCR), with 60% of a subset also testing positive for PCV3 by IHC analysis. Analysis by qPCR of 271 porcine respiratory disease diagnostic submission samples identified 34 PCV3-positive cases (12.5%), and enzyme-linked immunosorbent assay detection of anti-PCV3 capsid antibodies in serum samples found that 46 (55%) of 83 samples tested were positive. These results suggest that PCV3 commonly circulates within U.S. swine and may play an etiologic role in reproductive failure and PDNS. Because of the high economic impact of PCV2, this novel circovirus warrants further studies to elucidate its significance and role in PCVAD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Detection of a novel circovirus PCV3 in pigs with cardiac and multi-systemic inflammation

              Background Porcine circovirus 2 causes different clinical syndromes resulting in a significant economic loss in the pork industry. Three pigs with unexplained cardiac and multi-organ inflammation that tested negative for PCV2 and other known porcine pathogens were further analyzed. Methods Histology was used to identify microscopic lesions in multiple tissues. Metagenomics was used to detect viral sequences in tissue homogenates. In situ hybridization was used to detect viral RNA expression in cardiac tissue. Results In all three cases we characterized the genome of a new circovirus we called PCV3 with a replicase and capsid proteins showing 55 and 35 % identities to the genetically-closest proteins from a bat-feces associated circovirus and were even more distant to those of porcine circovirus 1 and 2. Common microscopic lesions included non-suppurative myocarditis and/or cardiac arteriolitis. Viral mRNA was detected intralesionally in cardiac cells. Deep sequencing in tissues also revealed the presence of porcine astrovirus 4 in all three animals as well as rotavirus A, porcine cytomegalovirus and porcine hemagglutinating encephalomyelitis virus in individual cases. Conclusion The pathogenicity and molecular epidemiology of this new circovirus, alone or in the context of co-infections, warrants further investigations.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Role: Academic Editor
                Journal
                Viruses
                Viruses
                viruses
                Viruses
                MDPI
                1999-4915
                20 April 2017
                April 2017
                : 9
                : 4
                : 83
                Affiliations
                Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany; MankertzA@ 123456rki.de
                Author notes
                [* ]Correspondence: DennerJ@ 123456rki.de ; Tel.: +49-30-18754-2800
                Article
                viruses-09-00083
                10.3390/v9040083
                5408689
                28425928
                da6c581b-d6eb-43ce-8ac8-a72941a4eb9b
                © 2017 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 01 March 2017
                : 12 April 2017
                Categories
                Review

                Microbiology & Virology
                porcine circoviruses,transspecies transmission of viruses,xenotransplantation,virus safety of xenotransplantation

                Comments

                Comment on this article