10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hospital Wastewater—Important Source of Multidrug Resistant Coliform Bacteria with ESBL-Production

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This work compares the prevalence of antibiotic resistant coliform bacteria in hospital wastewater effluents in Slovak (SR) and Czech Republic (ČR). It also describes selected antibiotic resistant isolates in view of resistance mechanism and virulence factor. The highest number of multidrug resistant bacteria was detected in samples from the hospital in Valašské Meziříčí (ČR). More than half of resistant isolates showed multidrug resistance phenotype as well as strong ability to form biofilm. In 42% of isolates efflux pump overproduction was detected together with tetA and tetE genes. The production of extended-spectrum β-lactamases in coliform isolates was encoded mainly by bla TEM , bla CTX-M-2 and bla CTX-M-8/25 genes. About 62% of resistants contained a combination of two or more extended spectrum beta-lactamases (ESBL) genes. Our results strengthen the fact that hospital effluents are a source of multidrug resistant bacteria which can spread their resistance genes to other bacteria in wastewater treatment plants (WWTPs). Accordingly, hospital wastewater should be better treated before it enters urban sewerage.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance.

          Many different definitions for multidrug-resistant (MDR), extensively drug-resistant (XDR) and pandrug-resistant (PDR) bacteria are being used in the medical literature to characterize the different patterns of resistance found in healthcare-associated, antimicrobial-resistant bacteria. A group of international experts came together through a joint initiative by the European Centre for Disease Prevention and Control (ECDC) and the Centers for Disease Control and Prevention (CDC), to create a standardized international terminology with which to describe acquired resistance profiles in Staphylococcus aureus, Enterococcus spp., Enterobacteriaceae (other than Salmonella and Shigella), Pseudomonas aeruginosa and Acinetobacter spp., all bacteria often responsible for healthcare-associated infections and prone to multidrug resistance. Epidemiologically significant antimicrobial categories were constructed for each bacterium. Lists of antimicrobial categories proposed for antimicrobial susceptibility testing were created using documents and breakpoints from the Clinical Laboratory Standards Institute (CLSI), the European Committee on Antimicrobial Susceptibility Testing (EUCAST) and the United States Food and Drug Administration (FDA). MDR was defined as acquired non-susceptibility to at least one agent in three or more antimicrobial categories, XDR was defined as non-susceptibility to at least one agent in all but two or fewer antimicrobial categories (i.e. bacterial isolates remain susceptible to only one or two categories) and PDR was defined as non-susceptibility to all agents in all antimicrobial categories. To ensure correct application of these definitions, bacterial isolates should be tested against all or nearly all of the antimicrobial agents within the antimicrobial categories and selective reporting and suppression of results should be avoided. © 2011 European Society of Clinical Microbiology and Infectious Diseases. No claim to original US government works.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biofilms: an emergent form of bacterial life.

            Bacterial biofilms are formed by communities that are embedded in a self-produced matrix of extracellular polymeric substances (EPS). Importantly, bacteria in biofilms exhibit a set of 'emergent properties' that differ substantially from free-living bacterial cells. In this Review, we consider the fundamental role of the biofilm matrix in establishing the emergent properties of biofilms, describing how the characteristic features of biofilms - such as social cooperation, resource capture and enhanced survival of exposure to antimicrobials - all rely on the structural and functional properties of the matrix. Finally, we highlight the value of an ecological perspective in the study of the emergent properties of biofilms, which enables an appreciation of the ecological success of biofilms as habitat formers and, more generally, as a bacterial lifestyle.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tackling antibiotic resistance: the environmental framework.

              Antibiotic resistance is a threat to human and animal health worldwide, and key measures are required to reduce the risks posed by antibiotic resistance genes that occur in the environment. These measures include the identification of critical points of control, the development of reliable surveillance and risk assessment procedures, and the implementation of technological solutions that can prevent environmental contamination with antibiotic resistant bacteria and genes. In this Opinion article, we discuss the main knowledge gaps, the future research needs and the policy and management options that should be prioritized to tackle antibiotic resistance in the environment.
                Bookmark

                Author and article information

                Journal
                Int J Environ Res Public Health
                Int J Environ Res Public Health
                ijerph
                International Journal of Environmental Research and Public Health
                MDPI
                1661-7827
                1660-4601
                26 October 2020
                November 2020
                : 17
                : 21
                : 7827
                Affiliations
                [1 ]Faculty of Chemical and Food Technology, Department of Nutrition and Food Quality Assessment, Slovak University of Technology, Radlinského 9, 81237 Bratislava, Slovakia; nagyovak5@ 123456gmail.com (K.L.); klara.cverenkarova@ 123456stuba.sk (K.C.); monika.krahulcova@ 123456stuba.sk (M.K.)
                [2 ]Faculty of Chemical and Food Technology, Institute of Biochemistry and Microbiology, Slovak University of Technology, Radlinského 9, 81237 Bratislava, Slovakia; petra.olejnikova@ 123456stuba.sk
                [3 ]Department of Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 81237 Bratislava, Slovakia; tomas.mackulak@ 123456stuba.sk
                Author notes
                [* ]Correspondence: lucyja.birosova@ 123456gmail.com ; Tel.: +421-2-5932-5478
                Author information
                https://orcid.org/0000-0001-9110-5526
                https://orcid.org/0000-0002-3573-5213
                https://orcid.org/0000-0001-5221-0251
                Article
                ijerph-17-07827
                10.3390/ijerph17217827
                7663260
                33114613
                da6d353e-719b-4713-b0c8-be2d44d3a4ea
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 11 September 2020
                : 22 October 2020
                Categories
                Article

                Public health
                antibiotic resistance,hospital wastewaters,esbl,biofilm,efflux pumps
                Public health
                antibiotic resistance, hospital wastewaters, esbl, biofilm, efflux pumps

                Comments

                Comment on this article