85
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Dynamic interaction of VCAM-1 and ICAM-1 with moesin and ezrin in a novel endothelial docking structure for adherent leukocytes

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ezrin, radixin, and moesin (ERM) regulate cortical morphogenesis and cell adhesion by connecting membrane adhesion receptors to the actin-based cytoskeleton. We have studied the interaction of moesin and ezrin with the vascular cell adhesion molecule (VCAM)-1 during leukocyte adhesion and transendothelial migration (TEM). VCAM-1 interacted directly with moesin and ezrin in vitro, and all of these molecules colocalized at the apical surface of endothelium. Dynamic assessment of this interaction in living cells showed that both VCAM-1 and moesin were involved in lymphoblast adhesion and spreading on the endothelium, whereas only moesin participated in TEM, following the same distribution pattern as ICAM-1. During leukocyte adhesion in static or under flow conditions, VCAM-1, ICAM-1, and activated moesin and ezrin clustered in an endothelial actin-rich docking structure that anchored and partially embraced the leukocyte containing other cytoskeletal components such as α-actinin, vinculin, and VASP. Phosphoinositides and the Rho/p160 ROCK pathway, which participate in the activation of ERM proteins, were involved in the generation and maintenance of the anchoring structure. These results provide the first characterization of an endothelial docking structure that plays a key role in the firm adhesion of leukocytes to the endothelium during inflammation.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          RADIOAUTOGRAPHIC STUDIES OF CHOLINE INCORPORATION INTO PERIPHERAL NERVE MYELIN

          This radioautographic study was designed to localize the cytological sites involved in the incorporation of a lipid precursor into the myelin and the myelin-related cell of the peripheral nervous system. Both myelinating and fully myelinated cultures of rat dorsal root ganglia were exposed to a 30-min pulse of tritiated choline and either fixed immediately or allowed 6 or 48 hr of chase incubation before fixation. After Epon embedding, light and electron microscopic radioautograms were prepared with Ilford L-4 emulsion. Analysis of the pattern of choline incorporation into myelinating cultures indicated that radioactivity appeared all along the length of the internode, without there being a preferential site of initial incorporation. Light microscopic radioautograms of cultures at varying states of maturity were compared in order to determine the relative degree of myelin labeling. This analysis indicated that the myelin-Schwann cell unit in the fully myelinated cultures incorporated choline as actively as did this unit in the myelinating cultures. Because of technical difficulties, it was not possible to determine the precise localization of the incorporated radioactivity within the compact myelin. These data are related to recent biochemical studies indicating that the mature myelin of the central nervous system does incorporate a significant amount of lipid precursor under the appropriate experimental conditions. These observations support the concept that a significant amount of myelin-related metabolic activity occurs in mature tissue; this activity is considered part of an essential and continuous process of myelin maintenance and repair.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A major role for VCAM-1, but not ICAM-1, in early atherosclerosis.

            VCAM-1 and ICAM-1 are endothelial adhesion molecules of the Ig gene superfamily that may participate in atherogenesis by promoting monocyte accumulation in the arterial intima. Both are expressed in regions predisposed to atherosclerosis and at the periphery of established lesions, while ICAM-1 is also expressed more broadly. To evaluate functions of VCAM-1 in chronic disease, we disrupted its fourth Ig domain, producing the murine Vcam1(D4D) allele. VCAM-1(D4D) mRNA and protein were reduced to 2-8% of wild-type allele (Vcam1(+)) levels but were sufficient to partially rescue the lethal phenotype of VCAM-1-null embryos. After crossing into the LDL receptor-null background, Vcam1(+/+) and Vcam1(D4D/D4D) paired littermates were generated from heterozygous intercrosses and fed a cholesterol-enriched diet for 8 weeks. The area of early atherosclerotic lesions in the aorta, quantified by en face oil red O staining, was reduced significantly in Vcam1(D4D/D4D) mice, although cholesterol levels, lipoprotein profiles, and numbers of circulating leukocytes were comparable to wild-type. In contrast, deficiency of ICAM-1 either alone or in combination with VCAM-1 deficiency did not alter nascent lesion formation. Therefore, although expression of both VCAM-1 and ICAM-1 is upregulated in atherosclerotic lesions, our data indicate that VCAM-1 plays a dominant role in the initiation of atherosclerosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              VCAM-1 on activated endothelium interacts with the leukocyte integrin VLA-4 at a site distinct from the VLA-4/fibronectin binding site.

              Cytokine-activated human endothelial cells express vascular cell adhesion molecule-1 (VCAM-1), which binds lymphocytes. We now identify the integrin VLA-4 as a receptor for VCAM-1 because VLA-4 surface expression on K-562 cells (following transfection of the VLA alpha 4 subunit cDNA) resulted in specific cell adhesion to VCAM-1, and anti-VLA-4 antibodies completely inhibited VCAM-1-dependent cell-cell attachment. In addition, VLA-4 expression allowed K-562 cells to attach to the heparin II binding region (FN-40) of fibronectin. However, VLA-4/VCAM-1 and VLA-4/FN-40 interactions are readily distinguishable: only the former was inhibited by the anti-VLA-4 monoclonal antibody HP1/3, and only the latter was inhibited by soluble FN-40. The VCAM-1/VLA-4 ligand-receptor pair may play a major role in the recruitment of mononuclear leukocytes to inflammatory sites in vivo.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                24 June 2002
                : 157
                : 7
                : 1233-1245
                Affiliations
                [1 ]Servicio de Inmunología, Hospital de la Princesa, Universidad Autónoma de Madrid, 28006 Madrid, Spain
                [2 ]Department of Pathology, Stanford University, Stanford, CA 94305
                Author notes

                Address correspondence to Servicio de Inmunología, Hospital de la Princesa, Universidad Autónoma de Madrid, C/Diego de León 62, 28006 Madrid, Spain. Tel.: 34-91-309-2115. Fax: 34-91-520-2374. E-mail: fsanchez@ 123456hlpr.insalud.es

                Article
                0112126
                10.1083/jcb.200112126
                2173557
                12082081
                da7a2906-00cc-4e4e-b313-fb2316b9ab65
                Copyright © 2002, The Rockefeller University Press
                History
                : 24 December 2001
                : 7 May 2002
                : 7 May 2002
                Categories
                Article

                Cell biology
                erm; vcam-1; icam-1; leukocyte adhesion and transendothelial migration; docking structure

                Comments

                Comment on this article