10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rapid Effects of Hearing Song on Catecholaminergic Activity in the Songbird Auditory Pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Catecholaminergic (CA) neurons innervate sensory areas and affect the processing of sensory signals. For example, in birds, CA fibers innervate the auditory pathway at each level, including the midbrain, thalamus, and forebrain. We have shown previously that in female European starlings, CA activity in the auditory forebrain can be enhanced by exposure to attractive male song for one week. It is not known, however, whether hearing song can initiate that activity more rapidly. Here, we exposed estrogen-primed, female white-throated sparrows to conspecific male song and looked for evidence of rapid synthesis of catecholamines in auditory areas. In one hemisphere of the brain, we used immunohistochemistry to detect the phosphorylation of tyrosine hydroxylase (TH), a rate-limiting enzyme in the CA synthetic pathway. We found that immunoreactivity for TH phosphorylated at serine 40 increased dramatically in the auditory forebrain, but not the auditory thalamus and midbrain, after 15 min of song exposure. In the other hemisphere, we used high pressure liquid chromatography to measure catecholamines and their metabolites. We found that two dopamine metabolites, dihydroxyphenylacetic acid and homovanillic acid, increased in the auditory forebrain but not the auditory midbrain after 30 min of exposure to conspecific song. Our results are consistent with the hypothesis that exposure to a behaviorally relevant auditory stimulus rapidly induces CA activity, which may play a role in auditory responses.

          Related collections

          Most cited references87

          • Record: found
          • Abstract: found
          • Article: not found

          The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes.

          Through a widespread efferent projection system, the locus coeruleus-noradrenergic system supplies norepinephrine throughout the central nervous system. Initial studies provided critical insight into the basic organization and properties of this system. More recent work identifies a complicated array of behavioral and electrophysiological actions that have in common the facilitation of processing of relevant, or salient, information. This involves two basic levels of action. First, the system contributes to the initiation and maintenance of behavioral and forebrain neuronal activity states appropriate for the collection of sensory information (e.g. waking). Second, within the waking state, this system modulates the collection and processing of salient sensory information through a diversity of concentration-dependent actions within cortical and subcortical sensory, attention, and memory circuits. Norepinephrine-dependent modulation of long-term alterations in synaptic strength, gene transcription and other processes suggest a potentially critical role of this neurotransmitter system in experience-dependent alterations in neural function and behavior. The ability of a given stimulus to increase locus coeruleus discharge activity appears independent of affective valence (appetitive vs. aversive). Combined, these observations suggest that the locus coeruleus-noradrenergic system is a critical component of the neural architecture supporting interaction with, and navigation through, a complex world. These observations further suggest that dysregulation of locus coeruleus-noradrenergic neurotransmission may contribute to cognitive and/or arousal dysfunction associated with a variety of psychiatric disorders, including attention-deficit hyperactivity disorder, sleep and arousal disorders, as well as certain affective disorders, including post-traumatic stress disorder. Independent of an etiological role in these disorders, the locus coeruleus-noradrenergic system represents an appropriate target for pharmacological treatment of specific attention, memory and/or arousal dysfunction associated with a variety of behavioral/cognitive disorders.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Convergent regulation of locus coeruleus activity as an adaptive response to stress.

            Although hypothalamic-pituitary-adrenal axis activation is generally considered to be the hallmark of the stress response, many of the same stimuli that initiate this response also activate the locus coeruleus-norepinephrine system. Given its functional attributes, the parallel engagement of the locus coeruleus-norepinephrine system with the hypothalamic-pituitary-adrenal axis serves to coordinate endocrine and cognitive limbs of the stress response. The elucidation of stress-related afferents to the locus coeruleus and the electrophysiological characterization of these inputs are revealing how the activity of this system is fine-tuned by stressors to facilitate adaptive cognitive responses. Emerging from these studies, is a picture of complex interactions between the stress-related neuropeptide, corticotropin-releasing factor (CRF), endogenous opioids and the excitatory amino acid neurotransmitter, glutamate. The net effect of these interactions is to adjust the activity and reactivity of the locus coeruleus-norepinephrine system such that state of arousal and processing of sensory stimuli are modified to facilitate adaptive behavioral responses to stressors. This review begins with an introduction to the basic anatomical and physiological characteristics of locus coeruleus neurons. The concept that locus coeruleus neurons operate through two activity modes, i.e., tonic vs. phasic, that determine distinct behavioral strategies is emphasized in light of its relevance to stress. Anatomical and physiological evidence are then presented suggesting that interactions between stress-related neurotransmitters that converge on locus coeruleus neurons regulate shifts between these modes of discharge in response to the challenge of a stressor. This review focuses specifically on the locus coeruleus because it is the major source of norepinephrine to the forebrain and has been implicated in behavioral and cognitive aspects of stress responses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Differential effect of stress on in vivo dopamine release in striatum, nucleus accumbens, and medial frontal cortex.

              Microdialysis was used to assess extracellular dopamine in striatum, nucleus accumbens, and medial frontal cortex of unanesthetized rats both under resting conditions and in response to intermittent tail-shock stress. The dopamine metabolites 3,4-dihydroxyphenylacetic acid and homovanillic acid also were measured. The resting extracellular concentration of dopamine was estimated to be approximately 10 nM in striatum, 11 nM in nucleus accumbens, and 3 nM in medial frontal cortex. In contrast, the resting extracellular levels of 3,4-dihydroxyphenylacetic acid and homovanillic acid were in the low micromolar range. Intermittent tail-shock stress increased extracellular dopamine relative to baseline by 25% in striatum, 39% in nucleus accumbens, and 95% in medial frontal cortex. 3,4-Dihydroxyphenylacetic acid and homovanillic acid also were generally increased by stress, although there was a great deal of variability in these responses. These data provide direct in vivo evidence for the global activation of dopaminergic systems by stress and support the concept that there exist regional variations in the regulation of dopamine release.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                19 June 2012
                : 7
                : 6
                : e39388
                Affiliations
                [1 ]Department of Psychology, Emory University, Atlanta, Georgia, United States of America
                [2 ]Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
                [3 ]Curriculum in Neurobiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
                Claremont Colleges, United States of America
                Author notes

                Conceived and designed the experiments: DLM KWS. Performed the experiments: LLM MB JOP AIR SES DLM. Analyzed the data: KWS DLM. Contributed reagents/materials/analysis tools: KWS DLM. Wrote the paper: LLM MB KWS DLM.

                Article
                PONE-D-12-10434
                10.1371/journal.pone.0039388
                3378548
                22724011
                da7c21f4-a412-458c-afc6-6c7b57058c84
                Matragrano et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 10 April 2012
                : 23 May 2012
                Page count
                Pages: 13
                Categories
                Research Article
                Biology
                Immunology
                Immunologic Techniques
                Immunohistochemical Analysis
                Neuroscience
                Neurochemistry
                Neuromodulation
                Sensory Systems
                Auditory System
                Neuroethology
                Zoology
                Ornithology
                Chemistry
                Chromatography
                Liquid Chromatography

                Uncategorized
                Uncategorized

                Comments

                Comment on this article