30
views
0
recommends
+1 Recommend
2 collections
    0
    shares

      The APC waiver has been extended to also apply to manuscripts submitted until March 31, 2024.

      To submit to the journal, please click here.

      To learn more about AK Journals, please click here

      • Record: found
      • Abstract: found
      • Article: found

      Pro-inflammatory potential of Escherichia coli strains K12 and Nissle 1917 in a murine model of acute ileitis

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Non-pathogenic Escherichia coli (Ec) strains K12 (EcK12) and Nissle 1917 (EcN) are used for gene technology and probiotic treatment of intestinal inflammation, respectively. We investigated intestinal colonization and potential pro-inflammatory properties of EcK12, EcN, and commensal E. coli (EcCo) strains in Toxoplasma (T.) gondii-induced acute ileitis. Whereas gnotobiotic animals generated by quintuple antibiotic treatment were protected from ileitis, mice replenished with conventional microbiota suffered from small intestinal necrosis 7 days post- T. gondii infection (p.i.). Irrespective of the Ec strain, recolonized mice revealed mild to moderate histopathological changes in their ileal mucosa. Upon stable recolonization with EcK12, EcN, or EcCo, development of inflammation was accompanied by pro-inflammatory responses at day 7 p.i., including increased ileal T lymphocyte and apoptotic cell numbers compared to T. gondii-infected gnotobiotic controls. Strikingly, either Ec strain was capable to translocate to extraintestinal locations, such as MLN, spleen, and liver. Taken together, Ec strains used in gene technology and probiotic treatment are able to exert inflammatory responses in a murine model of small intestinal inflammation. In conclusion, the therapeutic use of Ec strains in patients with broad-spectrum antibiotic treatment and/or intestinal inflammation should be considered with caution.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli.

          We present the complete genome sequence of uropathogenic Escherichia coli, strain CFT073. A three-way genome comparison of the CFT073, enterohemorrhagic E. coli EDL933, and laboratory strain MG1655 reveals that, amazingly, only 39.2% of their combined (nonredundant) set of proteins actually are common to all three strains. The pathogen genomes are as different from each other as each pathogen is from the benign strain. The difference in disease potential between O157:H7 and CFT073 is reflected in the absence of genes for type III secretion system or phage- and plasmid-encoded toxins found in some classes of diarrheagenic E. coli. The CFT073 genome is particularly rich in genes that encode potential fimbrial adhesins, autotransporters, iron-sequestration systems, and phase-switch recombinases. Striking differences exist between the large pathogenicity islands of CFT073 and two other well-studied uropathogenic E. coli strains, J96 and 536. Comparisons indicate that extraintestinal pathogenic E. coli arose independently from multiple clonal lineages. The different E. coli pathotypes have maintained a remarkable synteny of common, vertically evolved genes, whereas many islands interrupting this common backbone have been acquired by different horizontal transfer events in each strain.
            • Record: found
            • Abstract: found
            • Article: not found

            Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens.

            How can probiotic bacteria transduce their health benefits to the host? Bacterial cell surface macromolecules are key factors in this beneficial microorganism-host crosstalk, as they can interact with host pattern recognition receptors (PRRs) of the gastrointestinal mucosa. In this Review, we highlight the documented signalling interactions of the surface molecules of probiotic bacteria (such as long surface appendages, polysaccharides and lipoteichoic acids) with PRRs. Research on host-probiotic interactions can benefit from well-documented host-microorganism studies that span the spectrum from pathogenicity to mutualism. Distinctions and parallels are therefore drawn with the interactions of similar molecules that are presented by gastrointestinal commensals and pathogens.
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Novel Murine Infection Models Provide Deep Insights into the “Ménage à Trois” of Campylobacter jejuni, Microbiota and Host Innate Immunity

              Background Although Campylobacter jejuni-infections have a high prevalence worldwide and represent a significant socioeconomic burden, it is still not well understood how C. jejuni causes intestinal inflammation. Detailed investigation of C. jejuni-mediated intestinal immunopathology is hampered by the lack of appropriate vertebrate models. In particular, mice display colonization resistance against this pathogen. Methodology/Principal Findings To overcome these limitations we developed a novel C. jejuni-infection model using gnotobiotic mice in which the intestinal flora was eradicated by antibiotic treatment. These animals could then be permanently associated with a complete human (hfa) or murine (mfa) microbiota. After peroral infection C. jejuni colonized the gastrointestinal tract of gnotobiotic and hfa mice for six weeks, whereas mfa mice cleared the pathogen within two days. Strikingly, stable C. jejuni colonization was accompanied by a pro-inflammatory immune response indicated by increased numbers of T- and B-lymphocytes, regulatory T-cells, neutrophils and apoptotic cells, as well as increased concentrations of TNF-α, IL-6, and MCP-1 in the colon mucosa of hfa mice. Analysis of MyD88−/−, TRIF−/−, TLR4−/−, and TLR9−/− mice revealed that TLR4- and TLR9-signaling was essential for immunopathology following C. jejuni-infection. Interestingly, C. jejuni-mutant strains deficient in formic acid metabolism and perception induced less intestinal immunopathology compared to the parental strain infection. In summary, the murine gut flora is essential for colonization resistance against C. jejuni and can be overcome by reconstitution of gnotobiotic mice with human flora. Detection of C. jejuni-LPS and -CpG-DNA by host TLR4 and TLR9, respectively, plays a key role in immunopathology. Finally, the host immune response is tightly coupled to bacterial formic acid metabolism and invasion fitness. Conclusion/Significance We conclude that gnotobiotic and “humanized” mice represent excellent novel C. jejuni-infection and -inflammation models and provide deep insights into the immunological and molecular interplays between C. jejuni, microbiota and innate immunity in human campylobacteriosis.

                Author and article information

                Journal
                1886
                122234
                European Journal of Microbiology and Immunology
                EuJMI
                Akadémiai Kiadó, co-published with Springer Science+Business Media B.V., Formerly Kluwer Academic Publishers B.V.
                2062-509X
                2062-8633
                1 June 2013
                : 3
                : 2
                : 126-134
                Affiliations
                [ 1 ] Department of Microbiology and Hygiene, Charité, University Medicine Berlin, Berlin, Germany
                [ 2 ] Department of Microbiology and Hygiene, University of Magdeburg, Magdeburg, Germany
                [ 3 ] Department of Internal Medicine, Rheumatology and Clinical Immunology/Research Center Immunosciences (RCIS), Charité, University Medicine Berlin, Berlin, Germany
                [ 4 ] Department of Microbiology and Hygiene, Charité, University Medicine Berlin, Centrum 5, Campus Benjamin Franklin, Hindenburgdamm 27, D-12203, Berlin, Germany
                Author notes
                [* ] 0049-30-8445-2194, 0049-30-450-524-902, markus.heimesaat@ 123456charite.de
                Article
                6
                10.1556/EuJMI.3.2013.2.6
                3832091
                24265929
                da89206c-8352-42ea-ae44-f9b496615bad
                History
                : 26 March 2013
                : 27 March 2013
                Categories
                Original Articles

                Medicine,Immunology,Health & Social care,Microbiology & Virology,Infectious disease & Microbiology
                security strains,pro-inflammatory potential,ileitis,acute intestinal inflammation,gnotobiotic mice,Th1-type immunopathology,mesenteric lymph nodes,T lymphocytes, E. coli Nissle 1917,bacterial translocation, E. coli K12,liver,apoptosis,spleen,probiotic,colonization resistance, Escherichia coli , Toxoplasma gondii

                Comments

                Comment on this article

                Related Documents Log