20
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Publish your biodiversity research with us!

      Submit your article here.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A new species of Pharmacis Hübner, 1820 from Spain with a brief review of the genera Pharmacis and Korscheltellus Börner, 1920 (Lepidoptera, Hepialidae)

      ,
      Nota Lepidopterologica
      Pensoft Publishers

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We here describe a new ghost moth (Hepialidae) species, Pharmacis cantabricus sp. n. from the Picos de Europa National Park, Cantabria, in northern Spain. The new species belongs to a group of mostly day-flying species that are restricted to the European Alps and some mountain ranges of southern Europe. Based on morphology and analysis of mitochondrial COI gene sequences, the new species is closely related to Pharmacis aemilianus (Constantini, 1911), an endemic of the Italian Apennines. However, Pharmacis cantabricus sp. n. can easily be distinguished from all related species based on both external and genitalic characters. We briefly review and illustrate all species of the genus Pharmacis Hübner, 1820 and discuss its relationship with the related genus Korscheltellus Börner, 1920. We reinstate Hepialus castillanus Oberthür, 1883 as a distinct species and transfer it to Korscheltellus (stat. rev., comb. n.).

          Related collections

          Most cited references7

          • Record: found
          • Abstract: found
          • Article: not found

          Phylogeny of Agrodiaetus Hübner 1822 (Lepidoptera: Lycaenidae) inferred from mtDNA sequences of COI and COII and nuclear sequences of EF1-alpha: karyotype diversification and species radiation.

          Butterflies in the large Palearctic genus Agrodiaetus (Lepidoptera: Lycaenidae) are extremely uniform and exhibit few distinguishing morphological characters. However, these insects are distinctive in one respect: as a group they possess among the greatest interspecific karyotype diversity in the animal kingdom, with chromosome numbers (n) ranging from 10 to 125. The monophyly of Agrodiaetus and its systematic position relative to other groups within the section Polyommatus have been controversial. Characters from the mitochondrial genes for cytochrome oxidases I and II and from the nuclear gene for elongation factor 1 alpha were used to reconstruct the phylogeny of Agrodiaetus using maximum parsimony and Bayesian phylogenetic methods. Ninety-one individuals, encompassing most of the taxonomic diversity of Agrodiaetus, and representatives of 14 related genera were included in this analysis. Our data indicate that Agrodiaetus is monophyletic. Representatives of the genus Polyommatus (sensu stricto) are the closest relatives. The sequences of the Agrodiaetus taxa in this analysis are tentatively arranged into 12 clades, only 1 of which corresponds to a species group traditionally recognized in Agrodiaetus. Heterogeneous substitution rates across a recovered topology were homogenized with a nonparametric rate-smoothing algorithm before the application of a molecular clock. Two published estimates of substitution rates dated the origin of Agrodiaetus between 2.51 and 3.85 million years ago. During this time, there was heterogeneity in the rate and direction of karyotype evolution among lineages within the genus. Karyotype instability has evolved independently three times in the section Polyommatus, within the lineages Agrodiaetus, Lysandra, and Plebicula. Rapid karyotype diversification may have played a significant role in the radiation of the genus Agrodiaetus.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Ghost-moths of the world: a global inventory and bibliography of the Exoporia (Mnesarchaeoidea and Hepialoidea) (Lepidoptera)

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A preliminary molecular phylogeny of shield-bearer moths (Lepidoptera: Adeloidea: Heliozelidae) highlights rich undescribed diversity

              Heliozelidae are a widespread, evolutionarily early diverging family of small, day-flying monotrysian moths, for which a comprehensive phylogeny is lacking. We generated the first molecular phylogeny of the family using DNA sequences of two mitochondrial genes (COI and COII) and two nuclear genes (H3 and 28S) from 130 Heliozelidae specimens, including eight of the twelve known genera: Antispila, Antispilina, Coptodisca, Heliozela, Holocacista, Hoplophanes, Pseliastis, and Tyriozela. Our results provide strong support for five major Heliozelidae clades: (i) a large widespread clade containing the leaf-mining genera Antispilina, Coptodisca and Holocacista and some species of Antispila, (ii) a clade containing most of the described Antispila, (iii) a clade containing the leaf-mining genus Heliozela and the monotypic genus Tyriozela, (iv) an Australian clade containing Pseliastis and (v) an Australian clade containing Hoplophanes. Each clade includes several new species and potentially new genera. Collectively, our data uncover a rich and undescribed diversity that appears to be especially prevalent in Australia. Our work highlights the need for a major taxonomic revision of the family and for generating a robust molecular phylogeny using multi-gene approaches in order to resolve the relationships among clades.
                Bookmark

                Author and article information

                Journal
                Nota Lepidopterologica
                NL
                Pensoft Publishers
                2367-5365
                0342-7536
                November 09 2018
                November 09 2018
                : 41
                : 2
                : 225-249
                Article
                10.3897/nl.41.26835
                da92aee3-d2e5-420b-bbb4-c99bd39d6bb6
                © 2018

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article