221
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      CYLD Deubiquitinates RIP1 in the TNFα-Induced Necrosome to Facilitate Kinase Activation and Programmed Necrosis

      research-article
      , , *
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Necroptosis/programmed necrosis is initiated by a macro-molecular protein complex termed the necrosome. Receptor interacting protein kinase 1 (RIPK1/RIP1) and RIP3 are key components of the necrosome. TNFα is a prototypic inducer of necrosome activation, and it is widely believed that deubiquitination of RIP1 at the TNFR-1 signaling complex precedes transition of RIP1 into the cytosol where it forms the RIP1-RIP3 necrosome. Cylindromatosis (CYLD) is believed to promote programmed necrosis by facilitating RIP1 deubiquitination at this membrane receptor complex.

          Methodology/Principal Findings

          We demonstrate that RIP1 is indeed the primary target of CYLD in TNFα-induced programmed necrosis. We observed that CYLD does not regulate RIP1 ubiquitination at the TNF receptor. TNF and zVAD-induced programmed necrosis was highly attenuated in CYLD -/- cells. However, in the presence of cycloheximide or SMAC mimetics, programmed necrosis was only moderately reduced in CYLD -/- cells. Under the latter conditions, RIP1-RIP3 necrosome formation is only delayed, but not abolished in CYLD -/- cells. We further demonstrate that RIP1 within the NP-40 insoluble necrosome is ubiquitinated and that CYLD regulates RIP1 ubiquitination in this compartment. Hence, RIP1 ubiquitination in this late-forming complex is greatly increased in CYLD -/- cells. Increased RIP1 ubiquitination impairs RIP1 and RIP3 phosphorylation, a signature of kinase activation.

          Conclusions/Significance

          Our results show that CYLD regulates RIP1 ubiquitination in the TNFα-induced necrosome, but not in the TNFR-1 signaling complex. In cells sensitized to programmed necrosis with SMAC mimetics, CYLD is not essential for necrosome assembly. Since SMAC mimetics induces the loss of the E3 ligases cIAP1 and cIAP2, reduced RIP1 ubiquitination could lead to reduced requirement for CYLD to remove ubiquitin chains from RIP1 in the TNFR-1 complex. As increased RIP1 ubiquitination in the necrosome correlates with impaired RIP1 and RIP3 phosphorylation and function, these results suggest that CYLD controls RIP1 kinase activity during necrosome assembly.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes.

          Apoptosis induced by TNF-receptor I (TNFR1) is thought to proceed via recruitment of the adaptor FADD and caspase-8 to the receptor complex. TNFR1 signaling is also known to activate the transcription factor NF-kappa B and promote survival. The mechanism by which this decision between cell death and survival is arbitrated is not clear. We report that TNFR1-induced apoptosis involves two sequential signaling complexes. The initial plasma membrane bound complex (complex I) consists of TNFR1, the adaptor TRADD, the kinase RIP1, and TRAF2 and rapidly signals activation of NF-kappa B. In a second step, TRADD and RIP1 associate with FADD and caspase-8, forming a cytoplasmic complex (complex II). When NF-kappa B is activated by complex I, complex II harbors the caspase-8 inhibitor FLIP(L) and the cell survives. Thus, TNFR1-mediated-signal transduction includes a checkpoint, resulting in cell death (via complex II) in instances where the initial signal (via complex I, NF-kappa B) fails to be activated.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB activation, and TNFalpha-dependent apoptosis.

            Inhibitor of apoptosis (IAP) proteins are antiapoptotic regulators that block cell death in response to diverse stimuli. They are expressed at elevated levels in human malignancies and are attractive targets for the development of novel cancer therapeutics. Herein, we demonstrate that small-molecule IAP antagonists bind to select baculovirus IAP repeat (BIR) domains resulting in dramatic induction of auto-ubiquitination activity and rapid proteasomal degradation of c-IAPs. The IAP antagonists also induce cell death that is dependent on TNF signaling and de novo protein biosynthesis. Additionally, the c-IAP proteins were found to function as regulators of NF-kappaB signaling. Through their ubiquitin E3 ligase activities c-IAP1 and c-IAP2 promote proteasomal degradation of NIK, the central ser/thr kinase in the noncanonical NF-kappaB pathway.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis.

              Tumor necrosis factor (TNF) is an important inflammatory cytokine and induces many cellular responses, including inflammation, cell proliferation, apoptosis, and necrosis. It is known that receptor interacting protein (RIP) kinases, RIP1 and RIP3, are key effectors of TNF-induced necrosis, but little is known about how these two RIP kinases mediate this process, although reactive oxygen species (ROS) generation and JNK activation have been suggested to be two downstream events of RIP kinases. Here we report the identification of mixed lineage kinase domain-like, MLKL, as a key RIP3 downstream component of TNF-induced necrosis. Through screening a kinase/phosphatase shRNA library in human colon adenocarcinoma HT-29 cells, we found that knockdown of MLKL blocked TNF-induced necrosis. Our data suggest that MLKL functions downstream of RIP1 and RIP3 and is recruited to the necrosome through its interaction with RIP3. Finally, we found that MLKL is required for the generation of ROS and the late-phase activation of JNK during TNF-induced necrosis. However, because these two events are not involved in TNF-induced necrosis in HT-29 cells, the target of MLKL during TNF-induced necrosis remains elusive. Taken together, our study suggests that MLKL is a key RIP3 downstream component of TNF-induced necrotic cell death.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                2 October 2013
                : 8
                : 10
                : e76841
                Affiliations
                [1]Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
                Johns Hopkins School of Medicine, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: DMM FKC. Performed the experiments: DMM TM FKC. Analyzed the data: DMM FKC. Wrote the manuscript: DM FKC.

                Article
                PONE-D-13-05603
                10.1371/journal.pone.0076841
                3788787
                24098568
                daa00cfb-827a-4445-9738-b57398f90877
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 4 February 2013
                : 4 September 2013
                Funding
                This work was supported by NIH grants AI083497 and AI088502 (to FKMC). DMM is supported by NIH T32 training grant (T32 AI07349). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article