13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of Per2 overexpression on growth inhibition and metastasis, and on MTA1, nm23-H1 and the autophagy-associated PI3K/PKB signaling pathway in nude mice xenograft models of ovarian cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The aim of the present study was to evaluate the association between Period2 ( Per2) and the occurrence and development of ovarian cancer, in addition to evaluating the effect of this gene on the growth and metastasis of ovarian cancer in nude mice xenograft models. The detection of Per2 by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting methods at various stages of ovarian cancer in tumor tissue samples was conducted. Nude mice xenograft models of ovarian cancer were constructed using an ovarian cancer cell line and, using a gene transfection technique, exogenous infusion of the recombinant gene, Per2, was performed. To assess for the successful and stable expression of Per2 in the tumor tissue, levels of Per2 expression in the nude mice xenograft models were detected by RT-qPCR. During the experimental period, the tumor volumes were measured every three days. Two weeks following treatment cessation, the nude mice were sacrificed and the tumor weight and volume were measured. Furthermore, detection of the changes in expression levels of metastasis-associated gene 1 ( MTA-1) and tumor metastasis suppressor gene, non-metastasis protein 23-H1 ( nm23-H1), and the expression change of autophagy-associated signal transduction pathway, phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB) kinase were analyzed. The findings demonstrated that with ovarian cancer stage development, the expression of Per2 gradually reduced or ceased. In addition, exogenous Per2 was successfully and stably expressed in nude mice tumor tissue samples. Furthermore, in the Per2 overexpression group, MTA-1 protein expression was significantly reduced when compared with the phosphate-buffered saline (PBS) control and empty plasmid groups, while nm23-H1 protein expression was significantly higher when compared with those two groups. The expression levels of PI3K and PKB kinase, which are marker proteins of the autophagy associated signaling pathway PI3K/PKB, were significantly downregulated, when compared with the PBS control and empty plasmid groups (P<0.001). Thus, it was demonstrated that Per2 is closely associated with the development of ovarian cancer, and late-stage ovarian cancer is associated with Per2 mutation or deletion. Per2 overexpression, via exogenous infusion reduced the ovarian cancer growth rate, which was demonstrated by a significant increase in the tumor inhibition rate. In addition, Per2 may inhibit the expression of MTA-1 and promote the expression of nm23-H1 to restrict ovarian tumor growth and metastasis. Finally, it is hypothesized that Per2 affects autophagy by interfering with the PI3K/PKB signaling pathway, causing inhibition of tumor angiogenesis in order to inhibit tumor growth.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Coordinated transcription of key pathways in the mouse by the circadian clock.

          In mammals, circadian control of physiology and behavior is driven by a master pacemaker located in the suprachiasmatic nuclei (SCN) of the hypothalamus. We have used gene expression profiling to identify cycling transcripts in the SCN and in the liver. Our analysis revealed approximately 650 cycling transcripts and showed that the majority of these were specific to either the SCN or the liver. Genetic and genomic analysis suggests that a relatively small number of output genes are directly regulated by core oscillator components. Major processes regulated by the SCN and liver were found to be under circadian regulation. Importantly, rate-limiting steps in these various pathways were key sites of circadian control, highlighting the fundamental role that circadian clocks play in cellular and organismal physiology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Akt stimulates aerobic glycolysis in cancer cells.

            Cancer cells frequently display high rates of aerobic glycolysis in comparison to their nontransformed counterparts, although the molecular basis of this phenomenon remains poorly understood. Constitutive activity of the serine/threonine kinase Akt is a common perturbation observed in malignant cells. Surprisingly, although Akt activity is sufficient to promote leukemogenesis in nontransformed hematopoietic precursors and maintenance of Akt activity was required for rapid disease progression, the expression of activated Akt did not increase the proliferation of the premalignant or malignant cells in culture. However, Akt stimulated glucose consumption in transformed cells without affecting the rate of oxidative phosphorylation. High rates of aerobic glycolysis were also identified in human glioblastoma cells possessing but not those lacking constitutive Akt activity. Akt-expressing cells were more susceptible than control cells to death after glucose withdrawal. These data suggest that activation of the Akt oncogene is sufficient to stimulate the switch to aerobic glycolysis characteristic of cancer cells and that Akt activity renders cancer cells dependent on aerobic glycolysis for continued growth and survival.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular analysis of mammalian circadian rhythms.

              In mammals, a master circadian "clock" resides in the suprachiasmatic nuclei (SCN) of the anterior hypothalamus. The SCN clock is composed of multiple, single-cell circadian oscillators, which, when synchronized, generate coordinated circadian outputs that regulate overt rhythms. Eight clock genes have been cloned that are involved in interacting transcriptional-/translational-feedback loops that compose the molecular clockwork. The daily light-dark cycle ultimately impinges on the control of two clock genes that reset the core clock mechanism in the SCN. Clock-controlled genes are also generated by the central clock mechanism, but their protein products transduce downstream effects. Peripheral oscillators are controlled by the SCN and provide local control of overt rhythm expression. Greater understanding of the cellular and molecular mechanisms of the SCN clockwork provides opportunities for pharmacological manipulation of circadian timing.
                Bookmark

                Author and article information

                Journal
                Mol Med Rep
                Mol Med Rep
                Molecular Medicine Reports
                D.A. Spandidos
                1791-2997
                1791-3004
                June 2016
                13 April 2016
                13 April 2016
                : 13
                : 6
                : 4561-4568
                Affiliations
                [1 ]Department of Obstetrics and Gynecology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
                [2 ]Bank of China Shanxi Branch, Taiyuan, Shanxi 030001, P.R. China
                Author notes
                Correspondence to: Dr Li Li, Department of Obstetrics and Gynecology, First Hospital of Shanxi Medical University, 85 South Jiefang Road, Taiyuan, Shanxi 030001, P.R. China, E-mail: yaya20120710@ 123456163.com
                Article
                mmr-13-06-4561
                10.3892/mmr.2016.5116
                4878548
                27082164
                daa11f38-ea7c-4d03-8a6a-ae28e762b8fd
                Copyright: © Wang et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 27 March 2015
                : 15 February 2016
                Categories
                Articles

                circadian gene,period2,gene transfection,ovarian tumor,nude mice xenograft,metastasis-associated gene 1,non-metastasis protein 23-h1,phosphatidylinositol 3-kinase/protein kinase b signaling pathway

                Comments

                Comment on this article