38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Cytoplasmic Complex Mediates Specific mRNA Recognition and Localization in Yeast

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The localization of ash mRNA in yeast requires the binding of She2p and the myosin adaptor protein She3p to its localization element, which is highly specific and leads to the assembly of stable transport complexes.

          Abstract

          In eukaryotes, hundreds of mRNAs are localized by specialized transport complexes. For localization, transcripts are recognized by RNA-binding proteins and incorporated into motor-containing messenger ribonucleoprotein particles (mRNPs). To date, the molecular assembly of such mRNPs is not well understood and most details on cargo specificity remain unresolved. We used ASH1-mRNA transport in yeast to provide a first assessment of where and how localizing mRNAs are specifically recognized and incorporated into mRNPs. By using in vitro–interaction and reconstitution assays, we found that none of the implicated mRNA-binding proteins showed highly specific cargo binding. Instead, we identified the cytoplasmic myosin adapter She3p as additional RNA-binding protein. We further found that only the complex of the RNA-binding proteins She2p and She3p achieves synergistic cargo binding, with an at least 60-fold higher affinity for localizing mRNAs when compared to control RNA. Mutational studies identified a C-terminal RNA-binding fragment of She3p to be important for synergistic RNA binding with She2p. The observed cargo specificity of the ternary complex is considerably higher than previously reported for localizing mRNAs. It suggests that RNA binding for mRNP localization generally exhibits higher selectivity than inferred from previous in vitro data. This conclusion is fully consistent with a large body of in vivo evidence from different organisms. Since the ternary yeast complex only assembles in the cytoplasm, specific mRNA recognition might be limited to the very last steps of mRNP assembly. Remarkably, the mRNA itself triggers the assembly of mature, motor-containing complexes. Our reconstitution of a major portion of the mRNA-transport complex offers new and unexpected insights into the molecular assembly of specific, localization-competent mRNPs and provides an important step forward in our mechanistic understanding of mRNA localization in general.

          Author Summary

          In eukaryotes, the majority of cells are asymmetric and a way to establish such polarity is directional transport of macromolecules along cytoskeletal filaments. Among the cargoes transported, mRNAs play an essential role, as their localized translation contributes significantly to the generation of asymmetry. To date, hundreds of asymmetrically localized mRNAs in various organisms have been identified. These mRNAs are recognized by RNA-binding proteins and incorporated into large motor-containing messenger ribonucleoprotein particles (mRNPs) whose molecular assembly is poorly understood. In this study, we used the well-characterized process of ASH1-mRNA transport in Saccharomyces cerevisiae to address the question of how localizing mRNAs are recognized and specifically incorporated into mRNPs. Surprisingly, we found that the previously implicated mRNA-binding proteins She2p and Puf6p do not bind to cargo mRNAs with high specificity. Instead, the cytoplasmic motor-adapter protein She3p is responsible for synergistic cargo binding with She2p and for the stable incorporation of specific localizing mRNA into the transport complex. We propose that the specific recognition of localizing mRNAs happens at the very last step of cytoplasmic mRNP maturation. Other organisms might employ similar mechanisms to establish cellular polarity.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data.

          The classical RNA secondary structure model considers A.U and G.C Watson-Crick as well as G.U wobble base pairs. Here we substitute it for a new one, in which sets of nucleotide cyclic motifs define RNA structures. This model allows us to unify all base pairing energetic contributions in an effective scoring function to tackle the problem of RNA folding. We show how pipelining two computer algorithms based on nucleotide cyclic motifs, MC-Fold and MC-Sym, reproduces a series of experimentally determined RNA three-dimensional structures from the sequence. This demonstrates how crucial the consideration of all base-pairing interactions is in filling the gap between sequence and structure. We use the pipeline to define rules of precursor microRNA folding in double helices, despite the presence of a number of presumed mismatches and bulges, and to propose a new model of the human immunodeficiency virus-1 -1 frame-shifting element.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Modular recognition of RNA by a human pumilio-homology domain.

            Puf proteins are developmental regulators that control mRNA stability and translation by binding sequences in the 3' untranslated regions of their target mRNAs. We have determined the structure of the RNA binding domain of the human Puf protein, Pumilio1, bound to a high-affinity RNA ligand. The RNA binds the concave surface of the molecule, where each of the protein's eight repeats makes contacts with a different RNA base via three amino acid side chains at conserved positions. We have mutated these three side chains in one repeat, thereby altering the sequence specificity of Pumilio1. Thus, the high affinity and specificity of the PUM-HD for RNA is achieved using multiple copies of a simple repeated motif.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Moving messages: the intracellular localization of mRNAs.

              mRNA localization is a common mechanism for targeting proteins to regions of the cell where they are required. It has an essential role in localizing cytoplasmic determinants, controlling the direction of protein secretion and allowing the local control of protein synthesis in neurons. New methods for in vivo labelling have revealed that several mRNAs are transported by motor proteins, but how most mRNAs are coupled to these proteins remains obscure.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                plos
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                April 2011
                April 2011
                19 April 2011
                : 9
                : 4
                : e1000611
                Affiliations
                [1 ]Institute of Structural Biology, Helmholtz Zentrum München–German Research Center for Environmental Health, München, Germany
                [2 ]Gene Center and Department of Biochemistry, Ludwig-Maximilians-University, München, Germany
                [3 ]Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
                [4 ]Center for Integrated Protein Science CIPSM, München, Germany
                [5 ]Interfaculty Institute for Biochemistry, University of Tübingen, Tübingen, Germany
                Cancer Research UK, United Kingdom
                Author notes

                The author(s) have made the following declarations about their contributions: Conceived and designed the experiments: MM RGH AM KK RPJ DN. Performed the experiments: MM RGH AM KK MS RPJ. Analyzed the data: MM RGH AM KK MS PC HU RPJ DN. Contributed reagents/materials/analysis tools: MM RGH AM KK PC HU RPJ DN. Wrote the paper: MM RGH DN.

                ¤: Current address: Roche Diagnostics GmbH, Penzberg, Germany

                Article
                10-PLBI-RA-8375R3
                10.1371/journal.pbio.1000611
                3079584
                21526221
                daa5b4c3-54cf-4c81-9e4d-e13a0cb530ca
                Müller et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 14 July 2010
                : 10 March 2011
                Page count
                Pages: 19
                Categories
                Research Article
                Biochemistry/Macromolecular Assemblies and Machines
                Cell Biology/Morphogenesis and Cell Biology
                Molecular Biology/RNA-Protein Interactions
                Molecular Biology/Translational Regulation

                Life sciences
                Life sciences

                Comments

                Comment on this article