89
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pulmonary vascular and right ventricular dysfunction in adult critical care: current and emerging options for management: a systematic literature review

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Pulmonary vascular dysfunction, pulmonary hypertension (PH), and resulting right ventricular (RV) failure occur in many critical illnesses and may be associated with a worse prognosis. PH and RV failure may be difficult to manage: principles include maintenance of appropriate RV preload, augmentation of RV function, and reduction of RV afterload by lowering pulmonary vascular resistance (PVR). We therefore provide a detailed update on the management of PH and RV failure in adult critical care.

          Methods

          A systematic review was performed, based on a search of the literature from 1980 to 2010, by using prespecified search terms. Relevant studies were subjected to analysis based on the GRADE method.

          Results

          Clinical studies of intensive care management of pulmonary vascular dysfunction were identified, describing volume therapy, vasopressors, sympathetic inotropes, inodilators, levosimendan, pulmonary vasodilators, and mechanical devices. The following GRADE recommendations (evidence level) are made in patients with pulmonary vascular dysfunction: 1) A weak recommendation (very-low-quality evidence) is made that close monitoring of the RV is advised as volume loading may worsen RV performance; 2) A weak recommendation (low-quality evidence) is made that low-dose norepinephrine is an effective pressor in these patients; and that 3) low-dose vasopressin may be useful to manage patients with resistant vasodilatory shock. 4) A weak recommendation (low-moderate quality evidence) is made that low-dose dobutamine improves RV function in pulmonary vascular dysfunction. 5) A strong recommendation (moderate-quality evidence) is made that phosphodiesterase type III inhibitors reduce PVR and improve RV function, although hypotension is frequent. 6) A weak recommendation (low-quality evidence) is made that levosimendan may be useful for short-term improvements in RV performance. 7) A strong recommendation (moderate-quality evidence) is made that pulmonary vasodilators reduce PVR and improve RV function, notably in pulmonary vascular dysfunction after cardiac surgery, and that the side-effect profile is reduced by using inhaled rather than systemic agents. 8) A weak recommendation (very-low-quality evidence) is made that mechanical therapies may be useful rescue therapies in some settings of pulmonary vascular dysfunction awaiting definitive therapy.

          Conclusions

          This systematic review highlights that although some recommendations can be made to guide the critical care management of pulmonary vascular and right ventricular dysfunction, within the limitations of this review and the GRADE methodology, the quality of the evidence base is generally low, and further high-quality research is needed.

          Related collections

          Most cited references346

          • Record: found
          • Abstract: found
          • Article: not found

          A comparison of continuous intravenous epoprostenol (prostacyclin) with conventional therapy for primary pulmonary hypertension.

          Primary pulmonary hypertension is a progressive disease for which no treatment has been shown in a prospective, randomized trial to improve survival. We conducted a 12-week prospective, randomized, multicenter open trial comparing the effects of the continuous intravenous infusion of epoprostenol (formerly called prostacyclin) plus conventional therapy with those of conventional therapy alone in 81 patients with severe primary pulmonary hypertension (New York Heart Association functional class III or IV). Exercise capacity was improved in the 41 patients treated with epoprostenol (median distance walked in six minutes, 362 m at 12 weeks vs. 315 m at base line), but it decreased in the 40 patients treated with conventional therapy alone (204 m at 12 weeks vs. 270 m at base line; P < 0.002 for the comparison of the treatment groups). Indexes of the quality of life were improved only in the epoprostenol group (P < 0.01). Hemodynamics improved at 12 weeks in the epoprostenol-treated patients. The changes in mean pulmonary-artery pressure for the epoprostenol and control groups were -8 percent and +3 percent, respectively (difference in mean change, -6.7 mm Hg; 95 percent confidence interval, -10.7 to -2.6 mm Hg; P < 0.002), and the mean changes in pulmonary vascular resistance for the epoprostenol and control groups were -21 percent and +9 percent, respectively (difference in mean change, -4.9 mm Hg/liter/min; 95 percent confidence interval, -7.6 to -2.3 mm Hg/liter/min; P < 0.001). Eight patients died during the study, all of whom had been randomly assigned to conventional therapy (P = 0.003). Serious complications included four episodes of catheter-related sepsis and one thrombotic event. As compared with conventional therapy, the continuous intravenous infusion of epoprostenol produced symptomatic and hemodynamic improvement, as well as improved survival in patients with severe primary pulmonary hypertension.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Guidelines for the diagnosis and treatment of pulmonary hypertension.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tricuspid annular displacement predicts survival in pulmonary hypertension.

              Right ventricular (RV) function is an important determinant of prognosis in pulmonary hypertension. However, noninvasive assessment of the RV function is often limited by complex geometry and poor endocardial definition. To test whether the degree of tricuspid annular displacement (tricuspid annular plane systolic excursion [TAPSE]) is a useful echo-derived measure of RV function with prognostic significance in pulmonary hypertension. We prospectively studied 63 consecutive patients with pulmonary hypertension who were referred for a clinically indicated right heart catheterization. Patients underwent right heart catheterization immediately followed by transthoracic echocardiogram and TAPSE measurement. In the overall cohort, a TAPSE of less than 1.8 cm was associated with greater RV systolic dysfunction (cardiac index, 1.9 vs. 2.7 L/min/m2; RV % area change, 24 vs. 33%), right heart remodeling (right atrial area index, 17.0 vs. 12.1 cm(2)/m), and RV-left ventricular (LV) disproportion (RV/LV diastolic area, 1.7 vs. 1.2; all p < 0.001), versus a TAPSE of 1.8 cm or greater. In patients with pulmonary arterial hypertension (PAH; n = 47), survival estimates at 1 and 2 yr were 94 and 88%, respectively, in those with a TAPSE of 1.8 cm or greater versus 60 and 50%, respectively, in subjects with a TAPSE less than 1.8 cm. The unadjusted risk of death (hazard ratio) in patients with a TAPSE less than 1.8 versus 1.8 cm or greater was 5.7 (95% confidence interval, 1.3-24.9; p = 0.02) for the PAH cohort. For every 1-mm decrease in TAPSE, the unadjusted risk of death increased by 17% (hazard ratio, 1.17; 95% confidence interval, 1.05-1.30; p = 0.006), which persisted after adjusting for other echocardiographic and hemodynamic variables and baseline treatment status. TAPSE powerfully reflects RV function and prognosis in PAH.
                Bookmark

                Author and article information

                Journal
                Crit Care
                Critical Care
                BioMed Central
                1364-8535
                1466-609X
                2010
                21 September 2010
                : 14
                : 5
                : R169
                Affiliations
                [1 ]Department of Critical Care, National Heart and Lung Institute, Imperial College London, Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
                [2 ]Centre for Perioperative Medicine and Critical Care Research, Imperial College Healthcare NHS Trust, Hammersmith Hospital, Du Cane Road, London W12 0HS, UK
                Article
                cc9264
                10.1186/cc9264
                3219266
                20858239
                daaca171-740e-4568-973d-103ba705c469
                Copyright ©2010 Price et al.; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 16 March 2010
                : 30 May 2010
                : 21 September 2010
                Categories
                Research

                Emergency medicine & Trauma
                Emergency medicine & Trauma

                Comments

                Comment on this article

                scite_

                Similar content74

                Cited by62

                Most referenced authors4,136