11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lactic Acidosis Induced by Linezolid Mimics Symptoms of an Acute Intracranial Bleed: A Case Report and Literature Review

      case-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lactic acidosis is common and most often associated with disturbed acid-base balance. Rarely, it can be a life-threatening medication side effect. Hence, determining the etiology of lactic acidosis early in patients is paramount in choosing the correct therapeutic intervention. Although lactic acidosis as an adverse drug reaction of linezolid is a well-recognized and documented clinical entity, the occurrence of such mimicking an acute intracranial bleed has not been reported to our knowledge. The following case is presented as an example of such an occurrence. A 67-year-old woman presented to the emergency department for lethargy, nausea and syncope. The head CT did not demonstrate any bleeding or mass effect, but lab results were significant for elevated lactic acid. The patient recently underwent left total hip replacement surgery, which was complicated by a methicillin-resistant Staphylococcus aureus (MRSA) infection. She received 6 weeks of oral linezolid therapy. And upon learning that key part of her history, the linezolid was discontinued. Her lactic acid rapidly normalized and she was discharged home. Several publications demonstrate that linezolid induces lactic acidosis by disrupting crucial mitochondrial functions. It is essential that clinicians are aware that linezolid can cause lactic acidosis. And, the important reminder is that adverse drug reactions can often mimic common diseases. If it is not recognized early, ominous clinical consequences may occur. In conclusion, linezolid should be suspected and included in the differential diagnosis if lactic acidosis exists with an uncommon clinical picture.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          The oxazolidinone antibiotics perturb the ribosomal peptidyl-transferase center and effect tRNA positioning.

          The oxazolidinones represent the first new class of antibiotics to enter into clinical usage within the past 30 years, but their binding site and mechanism of action has not been fully characterized. We have determined the crystal structure of the oxazolidinone linezolid bound to the Deinococcus radiodurans 50S ribosomal subunit. Linezolid binds in the A site pocket at the peptidyltransferase center of the ribosome overlapping the aminoacyl moiety of an A-site bound tRNA as well as many clinically important antibiotics. Binding of linezolid stabilizes a distinct conformation of the universally conserved 23S rRNA nucleotide U2585 that would be nonproductive for peptide bond formation. In conjunction with available biochemical data, we present a model whereby oxazolidinones impart their inhibitory effect by perturbing the correct positioning of tRNAs on the ribosome.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            D-lactic acidosis. A review of clinical presentation, biochemical features, and pathophysiologic mechanisms.

            This report describes a case of d-lactic acidosis observed by the authors and then reviews all case reports of d-lactic acidosis in the literature in order to define its clinical and biochemical features and pathogenetic mechanisms. The report also reviews the literature on metabolism of d-lactic acid in humans. The clinical presentation of d-lactic acidosis is characterized by episodes of encephalopathy and metabolic acidosis. The diagnosis should be considered in a patient who presents with metabolic acidosis and high serum anion gap, normal lactate level, negative Acetest, short bowel syndrome or other forms of malabsorption, and characteristic neurologic findings. Development of the syndrome requires the following conditions 1) carbohydrate malabsorption with increased delivery of nutrients to the colon, 2) colonic bacterial flora of a type that produces d-lactic acid, 3) ingestion of large amounts of carbohydrate, 4) diminished colonic motility, allowing time for nutrients in the colon to undergo bacterial fermentation, and 5) impaired d-lactate metabolism. In contrast to the initial assumption that d-lactic acid is not metabolized by humans, analysis of published data shows a substantial rate of metabolism of d-lactate by normal humans. Estimates based on these data suggest that impaired metabolism of d-lactate is almost a prerequisite for the development of the syndrome.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nonclinical and pharmacokinetic assessments to evaluate the potential of tedizolid and linezolid to affect mitochondrial function.

              Prolonged treatment with the oxazolidinone linezolid is associated with myelosuppression, lactic acidosis, and neuropathies, toxicities likely caused by impairment of mitochondrial protein synthesis (MPS). To evaluate the potential of the novel oxazolidinone tedizolid to cause similar side effects, nonclinical and pharmacokinetic assessments were conducted. In isolated rat heart mitochondria, tedizolid inhibited MPS more potently than did linezolid (average [± standard error of the mean] 50% inhibitory concentration [IC50] for MPS of 0.31 ± 0.02 μM versus 6.4 ± 1.2 μM). However, a rigorous 9-month rat study comparing placebo and high-dose tedizolid (resulting in steady-state area under the plasma concentration-time curve values about 8-fold greater than those with the standard therapeutic dose in humans) showed no evidence of neuropathy. Additional studies explored why prolonged, high-dose tedizolid did not cause these mitochondriopathic side effects despite potent MPS inhibition by tedizolid. Murine macrophage (J774) cell fractionation studies found no evidence of a stable association of tedizolid with eukaryotic mitochondria. Monte Carlo simulations based on population pharmacokinetic models showed that over the course of a dosing interval using standard therapeutic doses, free plasma concentrations fell below the respective MPS IC50 in 84% of tedizolid-treated patients (for a median duration of 7.94 h) and 38% of linezolid-treated patients (for a median duration of 0 h). Therapeutic doses of tedizolid, but not linezolid, may therefore allow for mitochondrial recovery during antibacterial therapy. The overall results suggest that tedizolid has less potential to cause myelosuppression and neuropathy than that of linezolid during prolonged treatment courses. This, however, remains a hypothesis that must be confirmed in clinical studies.
                Bookmark

                Author and article information

                Journal
                J Clin Med Res
                J Clin Med Res
                Elmer Press
                Journal of Clinical Medicine Research
                Elmer Press
                1918-3003
                1918-3011
                October 2016
                30 August 2016
                : 8
                : 10
                : 753-756
                Affiliations
                [a ]Department of Internal Medicine, AMITA Health Adventist Medical Center, Hinsdale, 911 N Elm St #102, Hinsdale, IL 60521; University of Medicine and Health Sciences, New York, NY, USA
                [b ]Department of Internal Medicine, Advocate Christ Medical Center, 4440 W 95th Street, Oak Lawn, IL 60453, USA
                [c ]AMITA Health Adventist Medical System, Bolingbrook, Glen Oaks, Hinsdale, La Grange, 911 N Elm St #102, Hinsdale, IL 60521, USA
                Author notes
                [d ]Corresponding Author: Nichole Suzzanne Zuccarini, Department of Internal Medicine, AMITA Health Adventist Medical Center, Hinsdale, 911 N Elm St #102, Hinsdale, IL 60521; University of Medicine and Health Sciences, New York, NY, USA. Email: nzuccarini@ 123456umhs-sk.net
                Article
                10.14740/jocmr2687w
                5012246
                27635182
                dab8328c-5e9e-4fd1-bd6e-30ef7117f882
                Copyright 2016, Zuccarini et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 08 August 2016
                Categories
                Case Report

                Medicine
                lactic acidosis,linezolid,mitochondrial dysfunction,drug-induced mitochondrial dysfunction,electron transport chain

                Comments

                Comment on this article