9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Small Molecule Chaperones for the Treatment of Gaucher Disease and GBA1-Associated Parkinson Disease

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Parkinson disease, the second most common movement disorder, is a complex neurodegenerative disorder hallmarked by the accumulation of alpha-synuclein, a neural-specific small protein associated with neuronal synapses. Mutations in the glucocerebrosidase gene ( GBA1), implicated in the rare, autosomal recessive lysosomal disorder Gaucher disease, are the most common known genetic risk factor for Parkinson disease. Insights into the inverse relationship between glucocerebrosidase and alpha-synuclein have led to new therapeutic approaches for the treatment of Gaucher disease and GBA1-associated Parkinson disease. Unlike the current drugs used to treat Gaucher disease, which are highly expensive and do not cross the blood-brain-barrier, new small molecules therapies, including competitive and non-competitive chaperones that enhance glucocerebrosidase levels are being developed to overcome these limitations. Some of these include iminosugars, ambroxol, other competitive glucocerebrosidase inhibitors, and non-inhibitory chaperones or activators that do not compete for the active site. These drugs, which have been shown in different disease models to increase glucocerebrosidase activity, could have potential as a therapy for Gaucher disease and GBA1- associated Parkinson disease. Some have been demonstrated to reduce α-synuclein levels in pre-clinical studies using cell-based or animal models of GBA1-associated Parkinson disease, and may also have utility for idiopathic Parkinson disease.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Reduced glucocerebrosidase is associated with increased α-synuclein in sporadic Parkinson's disease.

          Heterozygous mutations in GBA1, the gene encoding lysosomal glucocerebrosidase, are the most frequent known genetic risk factor for Parkinson's disease. Reduced glucocerebrosidase and α-synuclein accumulation are directly related in cell models of Parkinson's disease. We investigated relationships between Parkinson's disease-specific glucocerebrosidase deficits, glucocerebrosidase-related pathways, and α-synuclein levels in brain tissue from subjects with sporadic Parkinson's disease without GBA1 mutations. Brain regions with and without a Parkinson's disease-related increase in α-synuclein levels were assessed in autopsy samples from subjects with sporadic Parkinson's disease (n = 19) and age- and post-mortem delay-matched controls (n = 10). Levels of glucocerebrosidase, α-synuclein and related lysosomal and autophagic proteins were assessed by western blotting. Glucocerebrosidase enzyme activity was measured using a fluorimetric assay, and glucocerebrosidase and α-synuclein messenger RNA expression determined by quantitative polymerase chain reaction. Related sphingolipids were analysed by mass spectrometry. Multivariate statistical analyses were performed to identify differences between disease groups and regions, with non-parametric correlations used to identify relationships between variables. Glucocerebrosidase protein levels and enzyme activity were selectively reduced in the early stages of Parkinson's disease in regions with increased α-synuclein levels although limited inclusion formation, whereas GBA1 messenger RNA expression was non-selectively reduced in Parkinson's disease. The selective loss of lysosomal glucocerebrosidase was directly related to reduced lysosomal chaperone-mediated autophagy, increased α-synuclein and decreased ceramide. Glucocerebrosidase deficits in sporadic Parkinson's disease are related to the abnormal accumulation of α-synuclein and are associated with substantial alterations in lysosomal chaperone-mediated autophagy pathways and lipid metabolism. Our data suggest that the early selective Parkinson's disease changes are likely a result of the redistribution of cellular membrane proteins leading to a chronic reduction in lysosome function in brain regions vulnerable to Parkinson's disease pathology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            A multicenter study of glucocerebrosidase mutations in dementia with Lewy bodies.

            While mutations in glucocerebrosidase (GBA1) are associated with an increased risk for Parkinson disease (PD), it is important to establish whether such mutations are also a common risk factor for other Lewy body disorders. To establish whether GBA1 mutations are a risk factor for dementia with Lewy bodies (DLB). DESIGN We compared genotype data on patients and controls from 11 centers. Data concerning demographics, age at onset, disease duration, and clinical and pathological features were collected when available. We conducted pooled analyses using logistic regression to investigate GBA1 mutation carrier status as predicting DLB or PD with dementia status, using common control subjects as a reference group. Random-effects meta-analyses were conducted to account for additional heterogeneity. Eleven centers from sites around the world performing genotyping. Seven hundred twenty-one cases met diagnostic criteria for DLB and 151 had PD with dementia. We compared these cases with 1962 controls from the same centers matched for age, sex, and ethnicity. Frequency of GBA1 mutations in cases and controls. RESULTS We found a significant association between GBA1 mutation carrier status and DLB, with an odds ratio of 8.28 (95% CI, 4.78-14.88). The odds ratio for PD with dementia was 6.48 (95% CI, 2.53-15.37). The mean age at diagnosis of DLB was earlier in GBA1 mutation carriers than in noncarriers (63.5 vs 68.9 years; P < .001), with higher disease severity scores. Mutations in GBA1 are a significant risk factor for DLB. GBA1 mutations likely play an even larger role in the genetic etiology of DLB than in PD, providing insight into the role of glucocerebrosidase in Lewy body disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Ambroxol for the Treatment of Patients With Parkinson Disease With and Without Glucocerebrosidase Gene Mutations

              Key Points Question Does ambroxol cross the blood-brain barrier, and what are the biochemical changes associated with ambroxol therapy in patients with Parkinson disease with and without glucocerebrosidase gene mutations? Findings In this open-label clinical trial of 17 patients with Parkinson disease, ambroxol crossed the blood-brain barrier and bound to the β-glucocerebrosidase enzyme, and it increased β-glucocerebrosidase enzyme protein levels and cerebrospinal fluid α-synuclein levels in patients both with and without glucocerebrosidase gene mutations. Meaning Ambroxol therapy has potential for study as a neuroprotective compound for the treatment of patients with Parkinson disease both with and without glucocerebrosidase gene mutations.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Dev Biol
                Front Cell Dev Biol
                Front. Cell Dev. Biol.
                Frontiers in Cell and Developmental Biology
                Frontiers Media S.A.
                2296-634X
                19 May 2020
                2020
                : 8
                : 271
                Affiliations
                Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health , Bethesda, MD, United States
                Author notes

                Edited by: Miguel Weil, Tel Aviv University, Israel

                Reviewed by: Pervin Rukiye Dincer, Hacettepe University, Turkey; Mia Horowitz, Tel Aviv University, Israel

                *Correspondence: Ellen Sidransky, sidranse@ 123456mail.nih.gov

                This article was submitted to Molecular Medicine, a section of the journal Frontiers in Cell and Developmental Biology

                Article
                10.3389/fcell.2020.00271
                7248408
                32509770
                dab8ff6c-d157-4cd2-b817-34b38d80a8d0
                Copyright © 2020 Han, Sam and Sidransky.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 25 January 2020
                : 30 March 2020
                Page count
                Figures: 0, Tables: 1, Equations: 0, References: 73, Pages: 9, Words: 0
                Funding
                Funded by: National Human Genome Research Institute 10.13039/100000051
                Categories
                Cell and Developmental Biology
                Mini Review

                gaucher disease,parkinson disease,lysosome,glucocerebrosidase,gba1,small molecule chaperones

                Comments

                Comment on this article