0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Association Between SCN1A rs2298771, SCN1A rs10188577, SCN2A rs17183814, and SCN2A rs2304016 Polymorphisms and Responsiveness to Antiepileptic Drugs: A Meta-Analysis

      systematic-review

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: SCN1A and SCN2A genes have been reported to be associated with the efficacy of single and combined antiepileptic therapy, but the results remain contradictory. Previous meta-analyses on this topic mainly focused on the SCN1A rs3812718 polymorphism. However, meta-analyses focused on SCN1A rs2298771, SCN1A rs10188577, SCN2A rs17183814, or SCN2A rs2304016 polymorphisms are scarce or non-existent.

          Objective: We aimed to conduct a meta-analysis to determine the effects of SCN1A rs2298771, SCN1A rs10188577, SCN2A rs17183814, and SCN2A rs2304016 polymorphisms on resistance to antiepileptic drugs (AEDs).

          Methods: We searched the PubMed, Embase, Cochrane Library, WANFANG, and CNKI databases up to June 2020 to collect studies on the association of SCN1A and SCN2A polymorphisms with reactivity to AEDs. We calculated the pooled odds ratios (ORs) under the allelic, homozygous, heterozygous, dominant, and recessive genetic models to identify the association between the four single-nucleotide polymorphisms (SNPs) and resistance to AEDs.

          Results: Our meta-analysis included 19 eligible studies. The results showed that the SCN1A rs2298771 polymorphism was related to AED resistance in the allelic, homozygous, and recessive genetic models (G vs. A: OR = 1.20, 95% CI: 1.012–1.424; GG vs. AA: OR = 1.567, 95% CI: 1.147–2.142; GG vs. AA + AG: OR = 1.408, 95% CI: 1.053–1.882). The homozygous model remained significant after Bonferroni correction ( P < 0.0125). Further subgroup analyses demonstrated the significance of the correlation in the dominant model in Caucasians (South Asians) after Bonferroni correction (GG + GA vs. AA: OR = 1.620, 95% CI: 1.165–2.252). However, no association between SCN1A rs2298771 polymorphism and resistance to AEDs was found in Asians or Caucasians (non-South Asians). For SCN1A rs10188577, SCN2A rs17183814, and SCN2A rs2304016 polymorphisms, the correlations with responsiveness to AEDs were not significant in the overall population nor in any subgroup after conducting the Bonferroni correction. The results for SCN1A rs2298771, SCN1A rs10188577, and SCN2A rs2304016 polymorphisms were stable and reliable according to sensitivity analysis and Begg and Egger tests. However, the results for SCN2A rs17183814 polymorphism have to be treated cautiously owing to the significant publication bias revealed by Begg and Egger tests.

          Conclusions: The present meta-analysis indicated that SCN1A rs2298771 polymorphism significantly affects resistance to AEDs in the overall population and Caucasians (South Asians). There were no significant correlations between SCN1A rs10188577, SCN2A rs17183814, and SCN2A rs2304016 polymorphisms and resistance to AEDs.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: not found
          • Article: not found

          Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Epilepsy in adults

            Epilepsy is one of the most common serious brain conditions, affecting over 70 million people worldwide. Its incidence has a bimodal distribution with the highest risk in infants and older age groups. Progress in genomic technology is exposing the complex genetic architecture of the common types of epilepsy, and is driving a paradigm shift. Epilepsy is a symptom complex with multiple risk factors and a strong genetic predisposition rather than a condition with a single expression and cause. These advances have resulted in the new classification of epileptic seizures and epilepsies. A detailed clinical history and a reliable eyewitness account of a seizure are the cornerstones of the diagnosis. Ancillary investigations can help to determine cause and prognosis. Advances in brain imaging are helping to identify the structural and functional causes and consequences of the epilepsies. Comorbidities are increasingly recognised as important aetiological and prognostic markers. Antiseizure medication might suppress seizures in up to two-thirds of all individuals but do not alter long-term prognosis. Epilepsy surgery is the most effective way to achieve long-term seizure freedom in selected individuals with drug-resistant focal epilepsy, but it is probably not used enough. With improved understanding of the gradual development of epilepsy, epigenetic determinants, and pharmacogenomics comes the hope for better, disease-modifying, or even curative, pharmacological and non-pharmacological treatment strategies. Other developments are clinical implementation of seizure detection devices and new neuromodulation techniques, including responsive neural stimulation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Controlling the false discovery rate in behavior genetics research.

              The screening of many endpoints when comparing groups from different strains, searching for some statistically significant difference, raises the multiple comparisons problem in its most severe form. Using the 0.05 level to decide which of the many endpoints' differences are statistically significant, the probability of finding a difference to be significant even though it is not real increases far beyond 0.05. The traditional approach to this problem has been to control the probability of making even one such error--the Bonferroni procedure being the most familiar procedure achieving such control. However, the incurred loss of power stemming from such control led many practitioners to neglect multiplicity control altogether. The False Discovery Rate (FDR), suggested by Benjamini and Hochberg [J Royal Stat Soc Ser B 57 (1995) 289], is a new, different, and compromising point of view regarding the error in multiple comparisons. The FDR is the expected proportion of false discoveries among the discoveries, and controlling the FDR goes a long way towards controlling the increased error from multiplicity while losing less in the ability to discover real differences. In this paper we demonstrate the problem in two studies: the study of exploratory behavior [Behav Brain Res (2001)], and the study of the interaction of strain differences with laboratory environment [Science 284 (1999) 1670]. We explain the FDR criterion, and present two simple procedures that control the FDR. We demonstrate their increased power when used in the above two studies.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurol
                Front Neurol
                Front. Neurol.
                Frontiers in Neurology
                Frontiers Media S.A.
                1664-2295
                14 January 2021
                2020
                : 11
                : 591828
                Affiliations
                Department of Neurology, The First Hospital of Jilin University , Changchun, China
                Author notes

                Edited by: Sherifa Ahmed Hamed, Assiut University Hospitals, Egypt

                Reviewed by: Rodrigo Secolin, Campinas State University, Brazil; Ram Lakhan, University of Maryland, Baltimore, United States

                *Correspondence: Weihong Lin lm065923@ 123456outlook.com

                This article was submitted to Epilepsy, a section of the journal Frontiers in Neurology

                Article
                10.3389/fneur.2020.591828
                7840883
                33519675
                dabef7b7-b882-424c-bda4-5afb4a83465a
                Copyright © 2021 Li, Zhong, Lu, Zhao, Li and Lin.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 05 August 2020
                : 27 November 2020
                Page count
                Figures: 4, Tables: 3, Equations: 0, References: 35, Pages: 15, Words: 7263
                Categories
                Neurology
                Systematic Review

                Neurology
                antiepileptic drugs,responsiveness,resistance,polymorphisms,scn1a,scn2a
                Neurology
                antiepileptic drugs, responsiveness, resistance, polymorphisms, scn1a, scn2a

                Comments

                Comment on this article