68
views
0
recommends
+1 Recommend
1 collections
    1
    shares

      To submit to the journal, click here

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      RECENT TRENDS OF MACHINE LEARNING PREDICTIONS USING OPEN DATA: A SYSTEMATIC REVIEW

      1 , 2
      Journal of Information and Communication Technology
      UUM Press

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Machine learning (ML) prediction determinants based on open data (OD) are investigated in this work, which is accomplished by examining current research trends over ten years. Currently, OD is commonly regarded as the most crucial trend for users to improve their ability to make decisions, particularly to the exponential expansion of social networking sites (SNSs) and open government data (OGD).The purpose of this study was to examine if there was an increase in the usage of OD in ML prediction techniques by conducting a systematic literature review (SLR) of the results of the trends. The papers published in major online scientific databases between 2011 and 2020, including ScienceDirect, Scopus, IEEE Xplore, ACM, and Springer, were identified and analysed. After various selection and Springer, were identified and analysed. After various selection processes, according to SLR based on precise inclusion and exclusion criteria, a total of 302 articles were located. However, only 81 of them were included. The findings were presented and plotted based on the research questions (RQs). In conclusion, this research could be beneficial to organisations, practitioners, and researchers by providing information on current trends in the implementation of ML prediction using OD setting by mapping studies based on the RQs designed, the most recent growth, and the necessity for future research based on the findings.

          Related collections

          Author and article information

          Contributors
          Malaysia
          Malaysia
          Journal
          Journal of Information and Communication Technology
          UUM Press
          July 17 2022
          : 21
          : 337-381
          Affiliations
          [1 ]School of Computer Sciences, Universiti Sains Malaysia, Malaysia & Digital Management and Development Centre, Universiti Malaysia Perlis, Malaysia
          [2 ]School of Computer Sciences, Universiti Sains Malaysia, Malaysia
          Article
          12281
          10.32890/jict2022.21.3.3
          dac1339b-e3b3-4cb3-8f16-f152edf9e614

          All content is freely available without charge to users or their institutions. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission of the publisher or the author. Articles published in the journal are distributed under a http://creativecommons.org/licenses/by/4.0/.

          History

          Communication networks,Applied computer science,Computer science,Information systems & theory,Networking & Internet architecture,Artificial intelligence

          Comments

          Comment on this article