+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: not found

      Clinical features of COVID-19 in elderly patients: A comparison with young and middle-aged patients


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          Due to the general susceptibility of new coronaviruses, the clinical characteristics and outcomes of elderly and young patients may be different.


          To analyze the clinical characteristics of elderly patients with 2019 new-type coronavirus pneumonia (COVID-19).


          This is a retrospective study of patients with new coronavirus pneumonia (COVID-19) who were hospitalized in Hainan Provincial People's Hospital from January 15, 2020 to February 18, 2020. Compare the clinical characteristics of elderly with Young and Middle-aged patients.


          A total of 56 patients were enrolled 18 elderly patients (32.14%), and 38 young and middle-aged patients (67.86%). The most common symptoms in both groups were fever, followed by cough and sputum. Four patients in the elderly group received negative pressure ICU for mechanical ventilation, and five patients in the young and middle-aged group. One patient died in the elderly group (5.56%), and two patients died in the young and middle-aged group (5.26%). The PSI score of the elderly group was higher than that of the young and middle-aged group ( P < 0.001). The proportion of patients with PSI grades IV and V was significantly higher in the elderly group than in the young and middle-aged group ( P < 0.05). The proportion of multiple lobe involvement in the elderly group was higher than that in the young and middle-aged group ( P < 0.001), and there was no difference in single lobe lesions between the two groups. The proportion of lymphocytes in the elderly group was significantly lower than that in the young and middle-aged group ( P < 0.001), and the C-reactive protein was significantly higher in the young group ( P < 0.001). The Lopinavir and Ritonavir Tablets, Chinese medicine, oxygen therapy, and mechanical ventilation were statistically different in the elderly group and the young and middle-aged group, and the P values were all <0.05.


          The mortality of elderly patients with COVID-19 is higher than that of young and middle-aged patients, and the proportion of patients with PSI grade IV and V is significantly higher than that of young and middle-aged patients. Elderly patients with COVID-19 are more likely to progress to severe disease.

          Related collections

          Most cited references12

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The reproductive number of COVID-19 is higher compared to SARS coronavirus

          Introduction In Wuhan, China, a novel and alarmingly contagious primary atypical (viral) pneumonia broke out in December 2019. It has since been identified as a zoonotic coronavirus, similar to SARS coronavirus and MERS coronavirus and named COVID-19. As of 8 February 2020, 33 738 confirmed cases and 811 deaths have been reported in China. Here we review the basic reproduction number (R 0) of the COVID-19 virus. R 0 is an indication of the transmissibility of a virus, representing the average number of new infections generated by an infectious person in a totally naïve population. For R 0 > 1, the number infected is likely to increase, and for R 0 < 1, transmission is likely to die out. The basic reproduction number is a central concept in infectious disease epidemiology, indicating the risk of an infectious agent with respect to epidemic spread. Methods and Results PubMed, bioRxiv and Google Scholar were accessed to search for eligible studies. The term ‘coronavirus & basic reproduction number’ was used. The time period covered was from 1 January 2020 to 7 February 2020. For this time period, we identified 12 studies which estimated the basic reproductive number for COVID-19 from China and overseas. Table 1 shows that the estimates ranged from 1.4 to 6.49, with a mean of 3.28, a median of 2.79 and interquartile range (IQR) of 1.16. Table 1 Published estimates of R 0 for 2019-nCoV Study (study year) Location Study date Methods Approaches R 0 estimates (average) 95% CI Joseph et al. 1 Wuhan 31 December 2019–28 January 2020 Stochastic Markov Chain Monte Carlo methods (MCMC) MCMC methods with Gibbs sampling and non-informative flat prior, using posterior distribution 2.68 2.47–2.86 Shen et al. 2 Hubei province 12–22 January 2020 Mathematical model, dynamic compartmental model with population divided into five compartments: susceptible individuals, asymptomatic individuals during the incubation period, infectious individuals with symptoms, isolated individuals with treatment and recovered individuals R 0 = \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\beta$\end{document} / \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\alpha$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\beta$\end{document} = mean person-to-person transmission rate/day in the absence of control interventions, using nonlinear least squares method to get its point estimate \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\alpha$\end{document} = isolation rate = 6 6.49 6.31–6.66 Liu et al. 3 China and overseas 23 January 2020 Statistical exponential Growth, using SARS generation time = 8.4 days, SD = 3.8 days Applies Poisson regression to fit the exponential growth rateR 0 = 1/M(−𝑟)M = moment generating function of the generation time distributionr = fitted exponential growth rate 2.90 2.32–3.63 Liu et al. 3 China and overseas 23 January 2020 Statistical maximum likelihood estimation, using SARS generation time = 8.4 days, SD = 3.8 days Maximize log-likelihood to estimate R 0 by using surveillance data during a disease epidemic, and assuming the secondary case is Poisson distribution with expected value R 0 2.92 2.28–3.67 Read et al. 4 China 1–22 January 2020 Mathematical transmission model assuming latent period = 4 days and near to the incubation period Assumes daily time increments with Poisson-distribution and apply a deterministic SEIR metapopulation transmission model, transmission rate = 1.94, infectious period =1.61 days 3.11 2.39–4.13 Majumder et al. 5 Wuhan 8 December 2019 and 26 January 2020 Mathematical Incidence Decay and Exponential Adjustment (IDEA) model Adopted mean serial interval lengths from SARS and MERS ranging from 6 to 10 days to fit the IDEA model, 2.0–3.1 (2.55) / WHO China 18 January 2020 / / 1.4–2.5 (1.95) / Cao et al. 6 China 23 January 2020 Mathematical model including compartments Susceptible-Exposed-Infectious-Recovered-Death-Cumulative (SEIRDC) R = K 2 (L × D) + K(L + D) + 1L = average latent period = 7,D = average latent infectious period = 9,K = logarithmic growth rate of the case counts 4.08 / Zhao et al. 7 China 10–24 January 2020 Statistical exponential growth model method adopting serial interval from SARS (mean = 8.4 days, SD = 3.8 days) and MERS (mean = 7.6 days, SD = 3.4 days) Corresponding to 8-fold increase in the reporting rateR 0 = 1/M(−𝑟)𝑟 =intrinsic growth rateM = moment generating function 2.24 1.96–2.55 Zhao et al. 7 China 10–24 January 2020 Statistical exponential growth model method adopting serial interval from SARS (mean = 8.4 days, SD = 3.8 days) and MERS (mean = 7.6 days, SD = 3.4 days) Corresponding to 2-fold increase in the reporting rateR 0 = 1/M(−𝑟)𝑟 =intrinsic growth rateM = moment generating function 3.58 2.89–4.39 Imai (2020) 8 Wuhan January 18, 2020 Mathematical model, computational modelling of potential epidemic trajectories Assume SARS-like levels of case-to-case variability in the numbers of secondary cases and a SARS-like generation time with 8.4 days, and set number of cases caused by zoonotic exposure and assumed total number of cases to estimate R 0 values for best-case, median and worst-case 1.5–3.5 (2.5) / Julien and Althaus 9 China and overseas 18 January 2020 Stochastic simulations of early outbreak trajectories Stochastic simulations of early outbreak trajectories were performed that are consistent with the epidemiological findings to date 2.2 Tang et al. 10 China 22 January 2020 Mathematical SEIR-type epidemiological model incorporates appropriate compartments corresponding to interventions Method-based method and Likelihood-based method 6.47 5.71–7.23 Qun Li et al. 11 China 22 January 2020 Statistical exponential growth model Mean incubation period = 5.2 days, mean serial interval = 7.5 days 2.2 1.4–3.9 Averaged 3.28 CI, Confidence interval. Figure 1 Timeline of the R 0 estimates for the 2019-nCoV virus in China The first studies initially reported estimates of R 0 with lower values. Estimations subsequently increased and then again returned in the most recent estimates to the levels initially reported (Figure 1). A closer look reveals that the estimation method used played a role. The two studies using stochastic methods to estimate R 0, reported a range of 2.2–2.68 with an average of 2.44. 1 , 9 The six studies using mathematical methods to estimate R 0 produced a range from 1.5 to 6.49, with an average of 4.2. 2 , 4–6 , 8 , 10 The three studies using statistical methods such as exponential growth estimated an R 0 ranging from 2.2 to 3.58, with an average of 2.67. 3 , 7 , 11 Discussion Our review found the average R 0 to be 3.28 and median to be 2.79, which exceed WHO estimates from 1.4 to 2.5. The studies using stochastic and statistical methods for deriving R 0 provide estimates that are reasonably comparable. However, the studies using mathematical methods produce estimates that are, on average, higher. Some of the mathematically derived estimates fall within the range produced the statistical and stochastic estimates. It is important to further assess the reason for the higher R 0 values estimated by some the mathematical studies. For example, modelling assumptions may have played a role. In more recent studies, R 0 seems to have stabilized at around 2–3. R 0 estimations produced at later stages can be expected to be more reliable, as they build upon more case data and include the effect of awareness and intervention. It is worthy to note that the WHO point estimates are consistently below all published estimates, although the higher end of the WHO range includes the lower end of the estimates reviewed here. R 0 estimates for SARS have been reported to range between 2 and 5, which is within the range of the mean R 0 for COVID-19 found in this review. Due to similarities of both pathogen and region of exposure, this is expected. On the other hand, despite the heightened public awareness and impressively strong interventional response, the COVID-19 is already more widespread than SARS, indicating it may be more transmissible. Conclusions This review found that the estimated mean R 0 for COVID-19 is around 3.28, with a median of 2.79 and IQR of 1.16, which is considerably higher than the WHO estimate at 1.95. These estimates of R 0 depend on the estimation method used as well as the validity of the underlying assumptions. Due to insufficient data and short onset time, current estimates of R 0 for COVID-19 are possibly biased. However, as more data are accumulated, estimation error can be expected to decrease and a clearer picture should form. Based on these considerations, R 0 for COVID-19 is expected to be around 2–3, which is broadly consistent with the WHO estimate. Author contributions J.R. and A.W.S. had the idea, and Y.L. did the literature search and created the table and figure. Y.L. and A.W.S. wrote the first draft; A.A.G. drafted the final manuscript. All authors contributed to the final manuscript. Conflict of interest None declared.
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: retrospective case series

            Abstract Objective To study the clinical characteristics of patients in Zhejiang province, China, infected with the 2019 severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) responsible for coronavirus disease 2019 (covid-2019). Design Retrospective case series. Setting Seven hospitals in Zhejiang province, China. Participants 62 patients admitted to hospital with laboratory confirmed SARS-Cov-2 infection. Data were collected from 10 January 2020 to 26 January 2020. Main outcome measures Clinical data, collected using a standardised case report form, such as temperature, history of exposure, incubation period. If information was not clear, the working group in Hangzhou contacted the doctor responsible for treating the patient for clarification. Results Of the 62 patients studied (median age 41 years), only one was admitted to an intensive care unit, and no patients died during the study. According to research, none of the infected patients in Zhejiang province were ever exposed to the Huanan seafood market, the original source of the virus; all studied cases were infected by human to human transmission. The most common symptoms at onset of illness were fever in 48 (77%) patients, cough in 50 (81%), expectoration in 35 (56%), headache in 21 (34%), myalgia or fatigue in 32 (52%), diarrhoea in 3 (8%), and haemoptysis in 2 (3%). Only two patients (3%) developed shortness of breath on admission. The median time from exposure to onset of illness was 4 days (interquartile range 3-5 days), and from onset of symptoms to first hospital admission was 2 (1-4) days. Conclusion As of early February 2020, compared with patients initially infected with SARS-Cov-2 in Wuhan, the symptoms of patients in Zhejiang province are relatively mild.
              • Record: found
              • Abstract: found
              • Article: not found

              Pulmonary pathology of early phase 2019 novel coronavirus (COVID-19) pneumonia in two patients with lung cancer

              There is currently a lack of pathologic data on the novel coronavirus (SARS-CoV-2) pneumonia, or COVID-19, from autopsy or biopsy. Two patients who recently underwent lung lobectomies for adenocarcinoma were retrospectively found to have had COVID-19 at the time of surgery. These two cases thus provide important first opportunities to study the pathology of COVID-19. Pathologic examinations revealed that, apart from the tumors, the lungs of both patients exhibited edema, proteinaceous exudate, focal reactive hyperplasia of pneumocytes with patchy inflammatory cellular infiltration, and multinucleated giant cells. Hyaline membranes were not prominent. Since both patients did not exhibit symptoms of pneumonia at the time of surgery, these changes likely represent an early phase of the lung pathology of COVID-19 pneumonia.

                Author and article information

                J Infect
                J. Infect
                The Journal of Infection
                W.B. Saunders
                27 March 2020
                27 March 2020
                [a ]Hainan General Hospital, Geriatric center, China
                [b ]Hainan General Hospital, Medical Laboratory, China
                [c ]Hainan General Hospital, General Practice, China
                Author notes
                [* ]Corresponding author. hmliukai@ 123456126.com

                Contributed equally

                © 2020 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                : 4 March 2020

                Infectious disease & Microbiology
                clinical feature,covid-19,elderly patients,young and middle-aged patients


                Comment on this article