7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Longitudinal brain structural alterations in patients with nasopharyngeal carcinoma early after radiotherapy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background and purpose

          To investigate effects of radiotherapy on normal brain tissue using in vivo neuroimaging in patients with nasopharyngeal carcinoma (NPC).

          Methods and materials

          We used longitudinal MRI to monitor structural brain changes during standard radiotherapy in patients newly diagnosed with NPC. We assessed volumetric measures in 63 patients at 2–3 time points before and after radiotherapy, with 20 NPC-free participants as normal controls. Images were processed using validated software (FreeSurfer). Automated results were inspected visually for accuracy. We examined changes in volume of the whole brain, gray matter, white matter, and ventricles, as well as in cerebral volumes partitioned into temporal, frontal, parietal, and occipital lobes. A linear mixed model was used to evaluate longitudinal changes in these measurements. Statistical significance was evaluated at p < 0.05, which was corrected for multiple comparisons.

          Results

          Volumes of the gray matter, and bilateral temporal lobes decreased in a time-dependent manner, whereas ventricle volume showed a time-dependent increase after radiotherapy. No volume changes were detected in NPC patients before radiotherapy when compared normal controls. No volume changes were detected in the subcohort of patients after completion of induction chemotherapy but prior to initiation of radiotherapy. Changes of bilateral temporal lobe volume correlated with irradiation dose in this region. Expansion of the ventricles correlated with a reduction in cognition assessment.

          Conclusions

          We detected significant and progressive radiotherapy-associated structural changes in the brains of patients with NPC who were treated with standard radiotherapy, especially in the bilateral temporal lobe in which the effect was dose-dependent. Expansion of the ventricles can serve as an imaging marker for treatment-related reduction in cognitive function. Future studies with longer follow-ups are needed to evaluate morphometric changes long-term after radiotherapy.

          Highlights

          • Time-dependent ventricle expansion in NPC patients post radiotherapy (RT)

          • Time-dependent total gray matter and bilateral temporal lobe atrophy in NPC post-RT

          • The bilateral temporal lobe had a pattern of dose-dependent atrophy.

          • Longitudinal dilation of the ventricles correlated with reduction of cognition.

          • Moreover, these findings cannot be explained by chemotherapy.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The prevalence and prevention of nasopharyngeal carcinoma in China

          Nasopharyngeal carcinoma (NPC) has remarkable epidemiological features, including regional, racial, and familial aggregations. The aim of this review is to describe the epidemiological characteristics of NPC and to propose possible causes for the high incidence patterns in southern China. Since the etiology of NPC is not completely understood, approaches to primary prevention of NPC remain under consideration. This situation highlights the need to conduct secondary prevention, including improving rates of early detection, early diagnosis, and early treatment in NPC patients. Since the 1970's, high-risk populations in southern China have been screened extensively for early detection of NPC using anti–Epstein-Barr virus (EBV) serum biomarkers. This review summarizes several large screening studies that have been conducted in the high-incidence areas of China. Screening markers, high-risk age range for screening, time intervals for blood re-examination, and the effectiveness of these screening studies will be discussed. Conduction of prospective randomized controlled screening trials in southern China can be expected to maximize the cost-effectiveness of early NPC detection screening.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Radiation-induced brain injury: A review

            Approximately 100,000 primary and metastatic brain tumor patients/year in the US survive long enough (>6 months) to experience radiation-induced brain injury. Prior to 1970, the human brain was thought to be highly radioresistant; the acute CNS syndrome occurs after single doses >30 Gy; white matter necrosis occurs at fractionated doses >60 Gy. Although white matter necrosis is uncommon with modern techniques, functional deficits, including progressive impairments in memory, attention, and executive function have become important, because they have profound effects on quality of life. Preclinical studies have provided valuable insights into the pathogenesis of radiation-induced cognitive impairment. Given its central role in memory and neurogenesis, the majority of these studies have focused on the hippocampus. Irradiating pediatric and young adult rodent brains leads to several hippocampal changes including neuroinflammation and a marked reduction in neurogenesis. These data have been interpreted to suggest that shielding the hippocampus will prevent clinical radiation-induced cognitive impairment. However, this interpretation may be overly simplistic. Studies using older rodents, that more closely match the adult human brain tumor population, indicate that, unlike pediatric and young adult rats, older rats fail to show a radiation-induced decrease in neurogenesis or a loss of mature neurons. Nevertheless, older rats still exhibit cognitive impairment. This occurs in the absence of demyelination and/or white matter necrosis similar to what is observed clinically, suggesting that more subtle molecular, cellular and/or microanatomic modifications are involved in this radiation-induced brain injury. Given that radiation-induced cognitive impairment likely reflects damage to both hippocampal- and non-hippocampal-dependent domains, there is a critical need to investigate the microanatomic and functional effects of radiation in various brain regions as well as their integration at clinically relevant doses and schedules. Recently developed techniques in neuroscience and neuroimaging provide not only an opportunity to accomplish this, but they also offer the opportunity to identify new biomarkers and new targets for interventions to prevent or ameliorate these late effects.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Extreme sensitivity of adult neurogenesis to low doses of X-irradiation.

              Therapeutic irradiation of the brain is associated with a number of adverse effects, including cognitive impairment. Although the pathogenesis of radiation-induced cognitive injury is unknown, it may involve loss of neural precursor cells from the subgranular zone (SGZ) of the hippocampal dentate gyrus and alterations in new cell production (neurogenesis). Young adult male C57BL mice received whole brain irradiation, and 6-48 h later, hippocampal tissue was assessed using immunohistochemistry for detection of apoptosis and numbers of proliferating cells and immature neurons. Apoptosis peaked 12 h after irradiation, and its extent was dose dependent. Forty-eight h after irradiation, proliferating SGZ cells were reduced by 93-96%; immature neurons were decreased from 40 to 60% in a dose-dependent fashion. To determine whether acute cell sensitivity translated into long-term changes, we quantified neurogenesis 2 months after irradiation with 0, 2, 5, or 10 Gy. Multiple injections of BrdUrd were given to label proliferating cells, and 3 weeks later, confocal microscopy was used to determine the percentage of BrdUrd-labeled cells that showed mature cell phenotypes. The production of new neurons was significantly reduced by X-rays; that change was dose dependent. In contrast, there were no apparent effects on the production of new astrocytes or oligodendrocytes. Measures of activated microglia indicated that changes in neurogenesis were associated with a significant inflammatory response. Given the known effects of radiation on cognitive function and the relationship between hippocampal neurogenesis and associated memory formation, our data suggest that precursor cell radiation response and altered neurogenesis may play a contributory if not causative role in radiation-induced cognitive impairment.
                Bookmark

                Author and article information

                Contributors
                Journal
                Neuroimage Clin
                Neuroimage Clin
                NeuroImage : Clinical
                Elsevier
                2213-1582
                23 April 2018
                2018
                23 April 2018
                : 19
                : 252-259
                Affiliations
                [a ]Department of Radiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, PR China
                [b ]Department of Medical Imaging, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, PR China
                [c ]Department of Oncology, The First Affiliated Hospital of Ganzhou Medical University, Ganzhou, Jiangxi, PR China
                Author notes
                [* ]Correspondence to: Y. Qiu, Department of Radiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, PR China. qiuyw1201@ 123456gmail.com
                [** ]Correspondence to: X. Lv, Department of Medical Imaging, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, PR China. lvxf@ 123456sysucc.org.cn
                [1]

                Contribute equally.

                Article
                S2213-1582(18)30128-1
                10.1016/j.nicl.2018.04.019
                6051477
                30035019
                dac64ea0-e35e-40d6-96d3-c2927818a96d
                © 2018 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 30 January 2018
                : 29 March 2018
                : 16 April 2018
                Categories
                Regular Article

                radiotherapy,nasopharyngeal carcinoma (npc),mri,structural,brain

                Comments

                Comment on this article

                scite_

                Similar content379

                Cited by11

                Most referenced authors672