Blog
About

4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Arterial stiffness :

      ,

      Journal of Hypertension

      Ovid Technologies (Wolters Kluwer Health)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 13

          • Record: found
          • Abstract: found
          • Article: not found

          Noninvasive determination of age-related changes in the human arterial pulse.

          Arterial pressure waves were recorded noninvasively from the carotid, radial, femoral, or all three of these arteries of 1,005 normal subjects, aged 2-91 years, using a new transcutaneous tonometer containing a high fidelity Millar micromanometer. Waves were ensemble-averaged into age-decade groups. Characteristic changes were noted with increasing age. In all sites, pulse amplitude increased with advancing age (carotid, 91.3%; radial 67.5%; femoral, 50.1% from first to eighth decade), diastolic decay steepened, and diastolic waves became less prominent. In the carotid pulse, there was, in youth, a second peak on the downstroke of the waves in late systole. After the third decade, this second peak rose with age to merge with and dominate the initial rise. In the radial pulse, a late systolic wave was also apparent, but this occurred later; with age, this second peak rose but not above the initial rise in early systole, even at the eighth decade. In the femoral artery, there was a single systolic wave at all ages. Aging changes in the arterial pulse are explicable on the basis of both an increase in arterial stiffness with increased pulse-wave velocity and progressively earlier wave reflection. These two factors may be separated and effects of the latter measured from pressure wave-contour analysis using an "augmentation index," determined by a computer algorithm developed from invasive pressure and flow data. Changes in peak pressure in the central (carotid) artery show increasing cardiac afterload with increasing age in a normal population; this can account for the cardiac hypertrophy that occurs with advancing age (even as other organs atrophy) and the predisposition to cardiac failure in the elderly. Identification of mechanisms responsible offers a new approach to reduction of left ventricular afterload.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Prevention of stroke by antihypertensive drug treatment in older persons with isolated systolic hypertension. Final results of the Systolic Hypertension in the Elderly Program (SHEP). SHEP Cooperative Research Group

            (1991)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Noninvasive pulse wave analysis for the early detection of vascular disease.

              A noninvasive technique has been developed and validated for calculating capacitive and oscillatory systemic arterial compliance with the use of pulse wave analysis and a modified Windkessel model. Application of the technique to subjects with hypertension, postmenopausal women with symptomatic coronary artery disease, and appropriate control subjects has confirmed a reduction of oscillatory compliance in the disease states and an increase in capacitive and oscillatory compliances in response to vasodilator drugs. This method should be useful in screening subjects for early evidence of vascular disease and in monitoring the response to therapy.
                Bookmark

                Author and article information

                Journal
                Journal of Hypertension
                Journal of Hypertension
                Ovid Technologies (Wolters Kluwer Health)
                0263-6352
                1999
                January 1999
                : 17
                : 1
                : 1-4
                Article
                10.1097/00004872-199917010-00001
                © 1999

                Comments

                Comment on this article