66
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fluid-driven origami-inspired artificial muscles

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Significance

          Artificial muscles are flexible actuators with capabilities similar to, or even beyond, natural muscles. They have been widely used in many applications as alternatives to more traditional rigid electromagnetic motors. Numerous studies focus on rapid design and low-cost fabrication of artificial muscles with customized performances. Here, we present an architecture for fluidic artificial muscles with unprecedented performance-to-cost ratio. These artificial muscles can be programed to produce not only a single contraction but also complex multiaxial actuation, and even controllable motion with multiple degrees of freedom. Moreover, a wide variety of materials and fabrication processes can be used to build the artificial muscles with other functions beyond basic actuation.

          Abstract

          Artificial muscles hold promise for safe and powerful actuation for myriad common machines and robots. However, the design, fabrication, and implementation of artificial muscles are often limited by their material costs, operating principle, scalability, and single-degree-of-freedom contractile actuation motions. Here we propose an architecture for fluid-driven origami-inspired artificial muscles. This concept requires only a compressible skeleton, a flexible skin, and a fluid medium. A mechanical model is developed to explain the interaction of the three components. A fabrication method is introduced to rapidly manufacture low-cost artificial muscles using various materials and at multiple scales. The artificial muscles can be programed to achieve multiaxial motions including contraction, bending, and torsion. These motions can be aggregated into systems with multiple degrees of freedom, which are able to produce controllable motions at different rates. Our artificial muscles can be driven by fluids at negative pressures (relative to ambient). This feature makes actuation safer than most other fluidic artificial muscles that operate with positive pressures. Experiments reveal that these muscles can contract over 90% of their initial lengths, generate stresses of ∼600 kPa, and produce peak power densities over 2 kW/kg—all equal to, or in excess of, natural muscle. This architecture for artificial muscles opens the door to rapid design and low-cost fabrication of actuation systems for numerous applications at multiple scales, ranging from miniature medical devices to wearable robotic exoskeletons to large deployable structures for space exploration.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Design, fabrication and control of soft robots.

          Conventionally, engineers have employed rigid materials to fabricate precise, predictable robotic systems, which are easily modelled as rigid members connected at discrete joints. Natural systems, however, often match or exceed the performance of robotic systems with deformable bodies. Cephalopods, for example, achieve amazing feats of manipulation and locomotion without a skeleton; even vertebrates such as humans achieve dynamic gaits by storing elastic energy in their compliant bones and soft tissues. Inspired by nature, engineers have begun to explore the design and control of soft-bodied robots composed of compliant materials. This Review discusses recent developments in the emerging field of soft robotics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An integrated design and fabrication strategy for entirely soft, autonomous robots.

            Soft robots possess many attributes that are difficult, if not impossible, to achieve with conventional robots composed of rigid materials. Yet, despite recent advances, soft robots must still be tethered to hard robotic control systems and power sources. New strategies for creating completely soft robots, including soft analogues of these crucial components, are needed to realize their full potential. Here we report the untethered operation of a robot composed solely of soft materials. The robot is controlled with microfluidic logic that autonomously regulates fluid flow and, hence, catalytic decomposition of an on-board monopropellant fuel supply. Gas generated from the fuel decomposition inflates fluidic networks downstream of the reaction sites, resulting in actuation. The body and microfluidic logic of the robot are fabricated using moulding and soft lithography, respectively, and the pneumatic actuator networks, on-board fuel reservoirs and catalytic reaction chambers needed for movement are patterned within the body via a multi-material, embedded 3D printing technique. The fluidic and elastomeric architectures required for function span several orders of magnitude from the microscale to the macroscale. Our integrated design and rapid fabrication approach enables the programmable assembly of multiple materials within this architecture, laying the foundation for completely soft, autonomous robots.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Multigait soft robot.

              This manuscript describes a unique class of locomotive robot: A soft robot, composed exclusively of soft materials (elastomeric polymers), which is inspired by animals (e.g., squid, starfish, worms) that do not have hard internal skeletons. Soft lithography was used to fabricate a pneumatically actuated robot capable of sophisticated locomotion (e.g., fluid movement of limbs and multiple gaits). This robot is quadrupedal; it uses no sensors, only five actuators, and a simple pneumatic valving system that operates at low pressures (< 10 psi). A combination of crawling and undulation gaits allowed this robot to navigate a difficult obstacle. This demonstration illustrates an advantage of soft robotics: They are systems in which simple types of actuation produce complex motion.
                Bookmark

                Author and article information

                Journal
                Proc Natl Acad Sci U S A
                Proc. Natl. Acad. Sci. U.S.A
                pnas
                pnas
                PNAS
                Proceedings of the National Academy of Sciences of the United States of America
                National Academy of Sciences
                0027-8424
                1091-6490
                12 December 2017
                27 November 2017
                27 November 2017
                : 114
                : 50
                : 13132-13137
                Affiliations
                [1] aJohn A. Paulson School of Engineering and Applied Sciences, Harvard University , Cambridge, MA 02138;
                [2] bThe Wyss Institute for Biologically Inspired Engineering, Harvard University , Cambridge, MA 02138;
                [3] cComputer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology , Cambridge, MA 02139
                Author notes
                1To whom correspondence may be addressed. Email: lisg@ 123456seas.harvard.edu or rjwood@ 123456seas.harvard.edu .

                Edited by Joseph M. DeSimone, University of North Carolina at Chapel Hill and Carbon, Chapel Hill, NC, and approved October 17, 2017 (received for review July 28, 2017)

                Author contributions: S.L., D.R., and R.J.W. designed research; S.L., D.M.V., and R.J.W. performed research; S.L., D.M.V., D.R., and R.J.W. analyzed data; and S.L., D.R., and R.J.W. wrote the paper.

                Article
                201713450
                10.1073/pnas.1713450114
                5740677
                29180416
                dac916dc-4407-4f71-8239-395de432109b
                Copyright © 2017 the Author(s). Published by PNAS.

                This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

                History
                Page count
                Pages: 6
                Funding
                Funded by: DOD | Defense Advanced Research Projects Agency (DARPA) 100000185
                Award ID: FA8650-15-C-7548
                Funded by: National Science Foundation (NSF) 100000001
                Award ID: IIS-1226075
                Categories
                Physical Sciences
                Engineering

                artificial muscle,origami,actuator,robotics,soft robotics
                artificial muscle, origami, actuator, robotics, soft robotics

                Comments

                Comment on this article