10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gradients of Eph-A6 expression in primate retina suggest roles in both vascular and axon guidance

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          Recently we identified high levels of expression of Eph-A6 in the macula of developing human retina and showed localization of Eph-A6 to ganglion cells (GC). In the present study we investigated the expression of some members of the ephrin family in developing primate retina, including the topography of Eph-A6 expression, and its ligands, in developing macaque retinas.

          Methods

          We extracted RNA from human fetal retinas and probed for Eph-A5–A7, Eph-B1, ephrin-B2, and ephrin-A1-A5 by RT–PCR, then prepared riboprobes for Eph-A5-A7, Eph-B1 and ephrin-A1, -A4 and -B2. Paraffin sections of fetal macaque retinas were used to localize expression of Ephs and ephrins by in situ hybridization and immunohistochemistry.

          Results

          We identified prominent gradients of Eph-A6 mRNA expression in the ganglion cell layer (GCL) of fetal macaque retinas of different ages. The gradient of Eph-A6 expression was high near the optic disc and low at the developing macula at fetal day (Fd) 55. At Fd 70 and 80, the gradient of Eph-A6 expression was reversed, being higher temporal to the macula, and low at the disc. By Fd 110, when the fovea begins to form, a pattern of expression was established that persisted into the postnatal period, in which the highest levels of expression were detected at the developing fovea, and progressively lower levels of expression were detected at increasing distance from the fovea. Beginning at Fd 70, we also detected a gradient of Eph-A6 expression running perpendicular to the retinal surface within the GCL of central retina that was high in the inner GCL and low in the outer GCL. This second pattern persisted into the neonatal period. We found the two ligands for Eph-A6, ephrin-A1 and ephrin-A4, expressed by Pax2-immunoreactive astrocytes, in the optic nerve head and in the retina, by in situ hybridization and immunohistochemistry. We propose that during development of the retinal vasculature, migration of ligand-bearing astrocytes is slowed along this Eph-A6 expression gradient through repellent Eph-A6 - ephrin-A1 and -A4 signaling.

          Conclusions

          Patterns of Eph-A6 expression in the developing macaque retina suggest that Eph-A6 - ephrin-A1 and -A4 repellent signaling has a role in retinal vascular patterning, and in the postnatal maintenance of projections from macular and foveal GC.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Development of human protein reference database as an initial platform for approaching systems biology in humans.

          Human Protein Reference Database (HPRD) is an object database that integrates a wealth of information relevant to the function of human proteins in health and disease. Data pertaining to thousands of protein-protein interactions, posttranslational modifications, enzyme/substrate relationships, disease associations, tissue expression, and subcellular localization were extracted from the literature for a nonredundant set of 2750 human proteins. Almost all the information was obtained manually by biologists who read and interpreted >300,000 published articles during the annotation process. This database, which has an intuitive query interface allowing easy access to all the features of proteins, was built by using open source technologies and will be freely available at http://www.hprd.org to the academic community. This unified bioinformatics platform will be useful in cataloging and mining the large number of proteomic interactions and alterations that will be discovered in the postgenomic era.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin-B2 in cardiovascular development.

            Ephrin-B2 is a transmembrane ligand that is specifically expressed on arteries but not veins and that is essential for cardiovascular development. However, ephrin-B2 is also expressed in nonvascular tissues and interacts with multiple EphB class receptors expressed in both endothelial and nonendothelial cell types. Thus, the identity of the relevant receptor for ephrin-B2 and the site(s) where these molecules interact to control angiogenesis were not clear. Here we show that EphB4, a specific receptor for ephrin-B2, is exclusively expressed by vascular endothelial cells in embryos and is preferentially expressed on veins. A targeted mutation in EphB4 essentially phenocopies the mutation in ephrin-B2. These data indicate that ephrin-B2-EphB4 interactions are intrinsically required in vascular endothelial cells and are consistent with the idea that they mediate bidirectional signaling essential for angiogenesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Retinotopic map refinement requires spontaneous retinal waves during a brief critical period of development.

              During retinocollicular map development, spontaneous waves of action potentials spread across the retina, correlating activity among neighboring retinal ganglion cells (RGCs). To address the role of retinal waves in topographic map development, we examined wave dynamics and retinocollicular projections in mice lacking the beta2 subunit of the nicotinic acetylcholine receptor. beta2(-/-) mice lack waves during the first postnatal week, but RGCs have high levels of uncorrelated firing. By P8, the wild-type retinocollicular projection remodels into a refined map characterized by axons of neighboring RGCs forming focal termination zones (TZs) of overlapping arbors. In contrast, in P8 beta2(-/-) mice, neighboring RGC axons form large TZs characterized by broadly distributed arbors. At P8, glutamatergic retinal waves appear in beta2(-/-) mice, and later, visually patterned activity appears, but the diffuse TZs fail to remodel. Thus, spontaneous retinal waves that correlate RGC activity are required for retinotopic map remodeling during a brief early critical period.
                Bookmark

                Author and article information

                Journal
                Mol Vis
                MV
                Molecular Vision
                Molecular Vision
                1090-0535
                2009
                09 December 2009
                : 15
                : 2649-2662
                Affiliations
                [1 ]ARC Centre of Excellence in Vision Science and Research School of Biology, The Australian National University, Canberra, Australia
                [2 ]School of Optometry and Vision Science, The University of New South Wales, Kensington, Australia
                [3 ]Save Sight Institute, The University of Sydney, Sydney, Australia
                [4 ]Australian National University Medical School, The Australian National University, Canberra, Australia
                Author notes
                Correspondence to: Professor Jan M. Provis, Australian National University Medical School, Research School of Biology, The Australian National University, Canberra, Australia; Phone: +61 2 6125 4242; FAX: +61 2 6125 8680; email: jan.provis@ 123456anu.edu.au
                Article
                282 2009MOLVIS0227
                2791039
                20011078
                dad3c4a7-f6c1-4945-87de-bcb374a50f7d
                Copyright © 2008 Molecular Vision.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 05 July 2009
                : 02 December 2009
                Categories
                Research Article
                Custom metadata
                Export to XML
                Provis

                Vision sciences
                Vision sciences

                Comments

                Comment on this article