40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Photocatalytic Activity of Orchid-Flower-Shaped ZnO Nanoparticles, toward Cationic and Anionic Dye Degradation under Visible Light, and Its Anti-Cancer Potential

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Orchid-flower-shaped ZnO nanomaterials were successfully synthesized via green synthesis and an eco-friendly approach using an aqueous extract of Lycium chinense fruit as a reducing and capping agent. The synthesized Lycium chinense orchid-flower-shaped ZnO (LC-ZnO/OF) nanoparticles (NPs) were characterized using different analytical methods through X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), photoelectron spectroscopy (XPS), and photoluminescence (PL). The FE-TEM analysis revealed the orchid flower shape of the nanoparticles, and the elemental composition was confirmed via XPS analysis. The photocatalytic activity of the nanoparticles was determined by the degrading cationic dye methylene blue (MB) and the anionic dye Eosin Y (EY) under visible light irradiation at (400 w) within 180 min time, where it showed a significant ability to degrade both cationic and anionic dye by almost 50%. The LC-ZnO/OF photocatalyst was also used to check the toxicity level in human cancer cells, where it exhibited remarkable cytotoxicity to the human lung cancer (A549 cell line) and human gastric adenocarcinoma hyperdiploid (AGS cell line). The present investigation suggests that LC-ZnO/OF has the potential photocatalytic ability to degrade toxic dye as well as have anti-cancer effects. These preliminary results suggest that LC-ZnO/OF could have a significant impact on the environmental and biomedical fields.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens.

          Biosynthesis of nanoparticles is under exploration is due to wide biomedical applications and research interest in nanotechnology. Bioreduction of silver nitrate (AgNO(3)) and chloroauric acid (HAuCl(4)) for the synthesis of silver and gold nanoparticles respectively with the plant extract, Mentha piperita (Lamiaceae). The plant extract is mixed with AgNO(3) and HAuCl(2), incubated and studied synthesis of nanoparticles using UV-Vis spectroscopy. The nanoparticles were characterized by FTIR, SEM equipped with EDS. The silver nanoparticles synthesized were generally found to be spherical in shape with 90 nm, whereas the synthesized gold nanoparticles were found to be 150 nm. The results showed that the leaf extract of menthol is very good bioreductant for the synthesis of silver and gold nanoparticles and synthesized nanoparticles active against clinically isolated human pathogens, Staphylococcus aureus and Escherichia coli.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity.

            In the present investigation, we have described the green biosynthesis of ZnO nanoparticles (NPs) by using Solanum nigrum as capping agent. The functionalization of ZnO particles through S. nigrum leaf extract mediated bioreduction of ZnO was investigated through UV-Vis DRS, photoluminescence (PL), X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy, Field Emission Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy (TEM), thermal gravimetric-differential thermal analysis (TG-DTA), X-ray photoelectron spectroscopy (XPS) and antibacterial activities. UV-Vis-DRS studies revealed that the indirect band gap 3.38 eV and photoluminescence study reveals the blue emission at 402, 447, 469 and 483 nm and the green emission at 529 nm respectively. In addition, the synthesized NPs are wurtzite hexagonal structure with an average grain size lies between 20 and 30 nm were found from XRD analysis. Further, FT-IR spectra revealed the functional groups and the presence of protein as the stabilizing agent for surrounding the ZnO NPs. The diameter of the NPs in the range of 20-30 nm was found from FE-SEM study. TEM analysis was investigated the ZnO NPs as a quasi-spherical in shape and their diameter at around 29.79 nm. Finally, the current study has clearly demonstrated that the particle size variations and surface area to volume ratios of ZnO NPs are responsible for significant higher antibacterial activities. Further, the present investigation suggests that ZnO NPs has the potential applications for various medical and industrial fields so, that the investigation is so useful and helpful to the scientific communities.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Green synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: A review

              Highlights • Recent approaches for green synthesis of metallic nanoparticles were discussed. • The antibacterial activities of various metallic nanoparticles were mentioned. • The different modes and mechanisms of antibacterial property were deciphered.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                COATED
                Coatings
                Coatings
                MDPI AG
                2079-6412
                July 2022
                July 04 2022
                : 12
                : 7
                : 946
                Article
                10.3390/coatings12070946
                dad73aba-5b20-48da-8ea6-271c43a20dd6
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article