20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification and Characterization of Novel Perivascular Adventitial Cells in the Whole Mount Mesenteric Branch Artery Using Immunofluorescent Staining and Scanning Confocal Microscopy Imaging

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A novel perivascular adventitial cell termed, adventitial neuronal somata (ANNIES) expressing the neural cell adhesion molecule (NCAM) and the vasodilator neuropeptide, calcitonin gene-related peptide (CGRP), exists in the adult rat mesenteric branch artery (MBA) in situ. In addition, we have previously shown that ANNIES coexpress CGRP and NCAM. We now show that ANNIES express the neurite growth marker, growth associated protein-43(Gap-43), palladin, and the calcium sensing receptor (CaSR), that senses changes in extracellular Ca(2+) and participates in vasodilator mechanisms. Thus, a previously characterized vasodilator, calcium sensing autocrine/paracrine system, exists in the perivascular adventitia associated with neural-vascular interface. Images of the whole mount MBA segments were analyzed under scanning confocal microscopy. Confocal analysis showed that the Gap-43, CaSR, and palladin were present in ANNIES about 37 ± 4%, 94 ± 6%, and 80 ± 10% respectively, comparable to CGRP (100%). Immunoblots from MBA confirmed the presence of Gap-43 (48 kD), NCAM (120 and 140 kD), and palladin (90–92 and 140 kD). In summary, CGRP, and NCAM-containing neural cells in the perivascular adventitia also express palladin and CaSR, and coexpress Gap-43 which may participate in response to stress/injury and vasodilator mechanisms as part of a perivascular sensory neural network.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Vascular wall resident progenitor cells: a source for postnatal vasculogenesis.

          Here, we report the existence of endothelial precursor (EPC) and stem cells in a distinct zone of the vascular wall that are capable to differentiate into mature endothelial cells, hematopoietic and local immune cells, such as macrophages. This zone has been identified to be localized between smooth muscle and adventitial layer of human adult vascular wall. It predominantly contains CD34-positive (+) but CD31-negative (-) cells, which also express VEGFR2 and TIE2. Only few cells in this zone of the vascular wall are positive for CD45. In a ring assay using the fragments of human internal thoracic artery (HITA), we show here that the CD34+ cells of the HITA-wall form capillary sprouts ex vivo and are apparently recruited for capillary formation by tumor cells. New vessels formed by these vascular wall resident EPCs express markers for angiogenically activated endothelial cells, such as CEACAM1, and also for mature endothelial cells, such as VE-cadherin or occludin. Vascular wall areas containing EPCs are found in large and middle sized arteries and veins of all organs studied here. These data suggest the existence of a ;vasculogenic zone' in the wall of adult human blood vessels, which may serve as a source for progenitor cells for postnatal vasculogenesis, contributing to tumor vascularization and local immune response.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Perivascular multi-lineage progenitor cells in human organs: regenerative units, cytokine sources or both?

            Multi-lineage progenitors, e.g. mesenchymal stem cells, persist in adult developed organs, making a windfall for the cell therapist but an enigma for stem cell biologists. Recent results from our own and other laboratories show that the ancestor of these elusive adult stem cells is likely to be found in the perivascular area, explaining the ubiquitous distribution of these cells in the body. We have prospectively identified and purified vascular pericytes in multiple human organs and shown that these cells are potent mesodermal progenitors that give rise to genuine mesenchymal stem cells in culture. Pericytes can differentiate into diverse cell lineages, but also secrete multiple paracrine growth factors/cytokines, which likely explains in part their robust regenerative potential.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Characterization of Palladin, a Novel Protein Localized to Stress Fibers and Cell Adhesions

              Here, we describe the identification of a novel phosphoprotein named palladin, which colocalizes with α-actinin in the stress fibers, focal adhesions, cell–cell junctions, and embryonic Z-lines. Palladin is expressed as a 90–92-kD doublet in fibroblasts and coimmunoprecipitates in a complex with α-actinin in fibroblast lysates. A cDNA encoding palladin was isolated by screening a mouse embryo library with mAbs. Palladin has a proline-rich region in the NH2-terminal half of the molecule and three tandem Ig C2 domains in the COOH-terminal half. In Northern and Western blots of chick and mouse tissues, multiple isoforms of palladin were detected. Palladin expression is ubiquitous in embryonic tissues, and is downregulated in certain adult tissues in the mouse. To probe the function of palladin in cultured cells, the Rcho-1 trophoblast model was used. Palladin expression was observed to increase in Rcho-1 cells when they began to assemble stress fibers. Antisense constructs were used to attenuate expression of palladin in Rcho-1 cells and fibroblasts, and disruption of the cytoskeleton was observed in both cell types. At longer times after antisense treatment, fibroblasts became fully rounded. These results suggest that palladin is required for the normal organization of the actin cytoskeleton and focal adhesions.
                Bookmark

                Author and article information

                Journal
                Int J Cell Biol
                Int J Cell Biol
                IJCB
                International Journal of Cell Biology
                Hindawi Publishing Corporation
                1687-8876
                1687-8884
                2012
                19 February 2012
                : 2012
                : 172746
                Affiliations
                1Cardiovascular Disease Research Program, JLC-Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
                2Research Division, Texas Nerve and Paralysis Institute, Houston, TX 77030, USA
                3Intron Pharmaceuticals, Houston, TX 77005, USA
                4Hypertension & Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
                Author notes
                *Chandra Somasundaram: chandra@ 123456drnathmedical.com

                Academic Editor: G. S. Stein

                Article
                10.1155/2012/172746
                3296306
                22481943
                dad7ae62-c26b-47de-a19b-fbb506ce44c8
                Copyright © 2012 Chandra Somasundaram et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 26 September 2011
                : 11 November 2011
                : 15 November 2011
                Categories
                Research Article

                Cell biology
                Cell biology

                Comments

                Comment on this article