19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A Practical Guide to Whole Slide Imaging: A White Paper From the Digital Pathology Association

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Whole slide imaging (WSI) represents a paradigm shift in pathology, serving as a necessary first step for a wide array of digital tools to enter the field. Its basic function is to digitize glass slides, but its impact on pathology workflows, reproducibility, dissemination of educational material, expansion of service to underprivileged areas, and intrainstitutional and interinstitutional collaboration exemplifies a significant innovative movement with far-reaching effects. Although the benefits of WSI to pathology practices, academic centers, and research institutions are many, the complexities of implementation remain an obstacle to widespread adoption. In the wake of the first regulatory clearance of WSI for primary diagnosis in the United States, some barriers to adoption have fallen. Nevertheless, implementation of WSI remains a difficult prospect for many institutions, especially those with stakeholders unfamiliar with the technologies necessary to implement a system or who cannot effectively communicate to executive leadership and sponsors the benefits of a technology that may lack clear and immediate reimbursement opportunity.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          Metadata matters: access to image data in the real world

          Data sharing is important in the biological sciences to prevent duplication of effort, to promote scientific integrity, and to facilitate and disseminate scientific discovery. Sharing requires centralized repositories, and submission to and utility of these resources require common data formats. This is particularly challenging for multidimensional microscopy image data, which are acquired from a variety of platforms with a myriad of proprietary file formats (PFFs). In this paper, we describe an open standard format that we have developed for microscopy image data. We call on the community to use open image data standards and to insist that all imaging platforms support these file formats. This will build the foundation for an open image data repository.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis

            Pathologists face a substantial increase in workload and complexity of histopathologic cancer diagnosis due to the advent of personalized medicine. Therefore, diagnostic protocols have to focus equally on efficiency and accuracy. In this paper we introduce ‘deep learning’ as a technique to improve the objectivity and efficiency of histopathologic slide analysis. Through two examples, prostate cancer identification in biopsy specimens and breast cancer metastasis detection in sentinel lymph nodes, we show the potential of this new methodology to reduce the workload for pathologists, while at the same time increasing objectivity of diagnoses. We found that all slides containing prostate cancer and micro- and macro-metastases of breast cancer could be identified automatically while 30–40% of the slides containing benign and normal tissue could be excluded without the use of any additional immunohistochemical markers or human intervention. We conclude that ‘deep learning’ holds great promise to improve the efficacy of prostate cancer diagnosis and breast cancer staging.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Systematic analysis of breast cancer morphology uncovers stromal features associated with survival.

              The morphological interpretation of histologic sections forms the basis of diagnosis and prognostication for cancer. In the diagnosis of carcinomas, pathologists perform a semiquantitative analysis of a small set of morphological features to determine the cancer's histologic grade. Physicians use histologic grade to inform their assessment of a carcinoma's aggressiveness and a patient's prognosis. Nevertheless, the determination of grade in breast cancer examines only a small set of morphological features of breast cancer epithelial cells, which has been largely unchanged since the 1920s. A comprehensive analysis of automatically quantitated morphological features could identify characteristics of prognostic relevance and provide an accurate and reproducible means for assessing prognosis from microscopic image data. We developed the C-Path (Computational Pathologist) system to measure a rich quantitative feature set from the breast cancer epithelium and stroma (6642 features), including both standard morphometric descriptors of image objects and higher-level contextual, relational, and global image features. These measurements were used to construct a prognostic model. We applied the C-Path system to microscopic images from two independent cohorts of breast cancer patients [from the Netherlands Cancer Institute (NKI) cohort, n = 248, and the Vancouver General Hospital (VGH) cohort, n = 328]. The prognostic model score generated by our system was strongly associated with overall survival in both the NKI and the VGH cohorts (both log-rank P ≤ 0.001). This association was independent of clinical, pathological, and molecular factors. Three stromal features were significantly associated with survival, and this association was stronger than the association of survival with epithelial characteristics in the model. These findings implicate stromal morphologic structure as a previously unrecognized prognostic determinant for breast cancer.
                Bookmark

                Author and article information

                Journal
                Archives of Pathology & Laboratory Medicine
                Archives of Pathology & Laboratory Medicine
                Archives of Pathology and Laboratory Medicine
                0003-9985
                1543-2165
                February 2019
                February 2019
                : 143
                : 2
                : 222-234
                Affiliations
                [1 ]From the Department of Pathology & Laboratory Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania (Drs Zarella and Absar); Pharma Services, Indica Labs, Inc, Corrales, New Mexico (Mr Bowman); Comparative Biology and Safety Sciences, Amgen, Inc, South San Francisco, California (Dr Aeffner); 3Scan, San Francisco, California (Dr Farahani); Barco, Inc, Beaverton, Oregon (Mr Xthona); the Department of Pathology, The Ohio State University, Columbus (Dr Parwani); the Department of...
                Article
                10.5858/arpa.2018-0343-RA
                30307746
                dae0f8d8-4f7c-4c10-9c29-bcda51f2a36e
                © 2019
                History

                Comments

                Comment on this article