531
views
0
recommends
+1 Recommend
0 collections
    32
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A High Quality Draft Consensus Sequence of the Genome of a Heterozygous Grapevine Variety

      research-article
      1 , * , 2 , 1 , 1 , 2 , 1 , 2 , 1 , 2 , 1 , 2 , 1 , 2 , 1 , 2 , 1 , 2 , 1 , 2 , 1 , 2 , 1 , 2 , 1 , 2 , 1 , 2 , 1 , 2 , 1 , 5 , 1 , 5 , 1 , 5 , 1 , 4 , 4 , 3 , 3 , 6 , 9 , 7 , 7 , 7 , 1 ,   8 , 1 , 2 , 5 , 2 , 6 , 2 , 1 , 2 , 7 , 6 , 1
      PLoS ONE
      Public Library of Science
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Worldwide, grapes and their derived products have a large market. The cultivated grape species Vitis vinifera has potential to become a model for fruit trees genetics. Like many plant species, it is highly heterozygous, which is an additional challenge to modern whole genome shotgun sequencing. In this paper a high quality draft genome sequence of a cultivated clone of V. vinifera Pinot Noir is presented.

          Principal Findings

          We estimate the genome size of V. vinifera to be 504.6 Mb. Genomic sequences corresponding to 477.1 Mb were assembled in 2,093 metacontigs and 435.1 Mb were anchored to the 19 linkage groups (LGs). The number of predicted genes is 29,585, of which 96.1% were assigned to LGs. This assembly of the grape genome provides candidate genes implicated in traits relevant to grapevine cultivation, such as those influencing wine quality, via secondary metabolites, and those connected with the extreme susceptibility of grape to pathogens. Single nucleotide polymorphism (SNP) distribution was consistent with a diffuse haplotype structure across the genome. Of around 2,000,000 SNPs, 1,751,176 were mapped to chromosomes and one or more of them were identified in 86.7% of anchored genes. The relative age of grape duplicated genes was estimated and this made possible to reveal a relatively recent Vitis-specific large scale duplication event concerning at least 10 chromosomes (duplication not reported before).

          Conclusions

          Sanger shotgun sequencing and highly efficient sequencing by synthesis (SBS), together with dedicated assembly programs, resolved a complex heterozygous genome. A consensus sequence of the genome and a set of mapped marker loci were generated. Homologous chromosomes of Pinot Noir differ by 11.2% of their DNA (hemizygous DNA plus chromosomal gaps). SNP markers are offered as a tool with the potential of introducing a new era in the molecular breeding of grape.

          Related collections

          Most cited references105

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla.

          The analysis of the first plant genomes provided unexpected evidence for genome duplication events in species that had previously been considered as true diploids on the basis of their genetics. These polyploidization events may have had important consequences in plant evolution, in particular for species radiation and adaptation and for the modulation of functional capacities. Here we report a high-quality draft of the genome sequence of grapevine (Vitis vinifera) obtained from a highly homozygous genotype. The draft sequence of the grapevine genome is the fourth one produced so far for flowering plants, the second for a woody species and the first for a fruit crop (cultivated for both fruit and beverage). Grapevine was selected because of its important place in the cultural heritage of humanity beginning during the Neolithic period. Several large expansions of gene families with roles in aromatic features are observed. The grapevine genome has not undergone recent genome duplication, thus enabling the discovery of ancestral traits and features of the genetic organization of flowering plants. This analysis reveals the contribution of three ancestral genomes to the grapevine haploid content. This ancestral arrangement is common to many dicotyledonous plants but is absent from the genome of rice, which is a monocotyledon. Furthermore, we explain the chronology of previously described whole-genome duplication events in the evolution of flowering plants.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Plant pathogens and integrated defence responses to infection.

            Plants cannot move to escape environmental challenges. Biotic stresses result from a battery of potential pathogens: fungi, bacteria, nematodes and insects intercept the photosynthate produced by plants, and viruses use replication machinery at the host's expense. Plants, in turn, have evolved sophisticated mechanisms to perceive such attacks, and to translate that perception into an adaptive response. Here, we review the current knowledge of recognition-dependent disease resistance in plants. We include a few crucial concepts to compare and contrast plant innate immunity with that more commonly associated with animals. There are appreciable differences, but also surprising parallels.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pfam: clans, web tools and services

              Pfam is a database of protein families that currently contains 7973 entries (release 18.0). A recent development in Pfam has enabled the grouping of related families into clans. Pfam clans are described in detail, together with the new associated web pages. Improvements to the range of Pfam web tools and the first set of Pfam web services that allow programmatic access to the database and associated tools are also presented. Pfam is available on the web in the UK (), the USA (), France () and Sweden ().
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2007
                19 December 2007
                : 2
                : 12
                : e1326
                Affiliations
                [1 ]IASMA Research Center, San Michele all'Adige, Trento, Italy
                [2 ]Myriad Genetics Inc, Salt Lake City, Utah, United States of America
                [3 ]454 Life Sciences Corporation, Branford, Connecticut, United States of America
                [4 ]Roche Diagnostics Corporation, Roche Applied Science, Indianapolis, Indiana, United States of America
                [5 ]Amplicon Express Inc., Pullman, Washington, United States of America
                [6 ]Technology Park Lodi, Lodi, Italy
                [7 ]Department of Plant Systems Biology, VIB, Gent University, Gent, Belgium
                [8 ]Department of Biological Chemistry, Padova University, Padova, Italy
                [9 ]Department of Computer Science, Royal Holloway, University of London, Egham, Surrey, United Kingdom
                University of California at Davis, Genome Center, United States of America
                Author notes
                * To whom correspondence should be addressed. E-mail: riccardo.velasco@ 123456iasma.it

                Conceived and designed the experiments: RV AZ MT DP ST JLS MHS SKB AG FS RV.Performed the experiments: MT DAC MP LMF SV JR GM DI GC BW DM TM MF JTM GE RO NG MS YC CD AM KS QT TH AL CP BT KV RB.Analyzed the data: RV AZ MT DAC AC DP MP SV GM GC DM MF MP PG MM CS JB FC ASA CP BT AS VS JF LS SMG ST CM VS SKB PF AG YVP FS.Contributed reagents/materials/analysis tools: RV AZ AC MS LD AM KS QT TH AL JF LS KV ST RB PF YVP FS RV.Wrote the paper: RV AZ MT DAC AC DP MP SV GM MP PG JB FC ASA BT AS SMG ST CM JLS RB MHS VS SKB PF AG YVP FS RV.

                Article
                07-PONE-RA-02691R1
                10.1371/journal.pone.0001326
                2147077
                18094749
                dae42889-0f09-4d48-8f3f-0d1fa0ce4d59
                Velasco et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 5 October 2007
                : 21 November 2007
                Page count
                Pages: 17
                Categories
                Research Article
                Genetics and Genomics/Genome Projects
                Genetics and Genomics/Plant Genomes and Evolution

                Uncategorized
                Uncategorized

                Comments

                Comment on this article