5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Coronary vessel formation in development and disease: mechanisms and insights for therapy

      , ,
      Nature Reviews Cardiology
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references118

          • Record: found
          • Abstract: found
          • Article: not found

          Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction.

          In a cell-free approach to regenerative therapeutics, transient application of paracrine factors in vivo could be used to alter the behavior and fate of progenitor cells to achieve sustained clinical benefits. Here we show that intramyocardial injection of synthetic modified RNA (modRNA) encoding human vascular endothelial growth factor-A (VEGF-A) results in the expansion and directed differentiation of endogenous heart progenitors in a mouse myocardial infarction model. VEGF-A modRNA markedly improved heart function and enhanced long-term survival of recipients. This improvement was in part due to mobilization of epicardial progenitor cells and redirection of their differentiation toward cardiovascular cell types. Direct in vivo comparison with DNA vectors and temporal control with VEGF inhibitors revealed the greatly increased efficacy of pulse-like delivery of VEGF-A. Our results suggest that modRNA is a versatile approach for expressing paracrine factors as cell fate switches to control progenitor cell fate and thereby enhance long-term organ repair.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The bHLH transcription factor Tcf21 is required for lineage-specific EMT of cardiac fibroblast progenitors.

            The basic helix-loop-helix (bHLH) family of transcription factors orchestrates cell-fate specification, commitment and differentiation in multiple cell lineages during development. Here, we describe the role of a bHLH transcription factor, Tcf21 (epicardin/Pod1/capsulin), in specification of the cardiac fibroblast lineage. In the developing heart, the epicardium constitutes the primary source of progenitor cells that form two cell lineages: coronary vascular smooth muscle cells (cVSMCs) and cardiac fibroblasts. Currently, there is a debate regarding whether the specification of these lineages occurs early in the formation of the epicardium or later after the cells have entered the myocardium. Lineage tracing using a tamoxifen-inducible Cre expressed from the Tcf21 locus demonstrated that the majority of Tcf21-expressing epicardial cells are committed to the cardiac fibroblast lineage prior to initiation of epicardial epithelial-to-mesenchymal transition (EMT). Furthermore, Tcf21 null hearts fail to form cardiac fibroblasts, and lineage tracing of the null cells showed their inability to undergo EMT. This is the first report of a transcription factor essential for the development of cardiac fibroblasts. We demonstrate a unique role for Tcf21 in multipotent epicardial progenitors, prior to the process of EMT that is essential for cardiac fibroblast development.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Coronary arteries form by developmental reprogramming of venous cells.

              Coronary artery disease is the leading cause of death worldwide. Determining the coronary artery developmental program could aid understanding of the disease and lead to new treatments, but many aspects of the process, including their developmental origin, remain obscure. Here we show, using histological and clonal analysis in mice and cardiac organ culture, that coronary vessels arise from angiogenic sprouts of the sinus venosus-the vein that returns blood to the embryonic heart. Sprouting venous endothelial cells dedifferentiate as they migrate over and invade the myocardium. Invading cells differentiate into arteries and capillaries; cells on the surface redifferentiate into veins. These results show that some differentiated venous cells retain developmental plasticity, and indicate that position-specific cardiac signals trigger their dedifferentiation and conversion into coronary arteries, capillaries and veins. Understanding this new reprogramming process and identifying the endogenous signals should suggest more natural ways of engineering coronary bypass grafts and revascularizing the heart.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Cardiology
                Nat Rev Cardiol
                Springer Science and Business Media LLC
                1759-5002
                1759-5010
                June 25 2020
                Article
                10.1038/s41569-020-0400-1
                32587347
                dae65847-6032-44dc-affb-163cc0a3e296
                © 2020

                http://www.springer.com/tdm

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article