49
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Normal Cutaneous Wound Healing: Clinical Correlation with Cellular and Molecular Events

      ,
      Dermatologic Surgery
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cutaneous wound healing is a normal physiologic function, observed and described for centuries by those afflicted with wounds and by those caring for them. Recently, tremendous progress has been made in discovering the cellular and molecular mechanisms responsible for wound healing. Counseling patients appropriately and planning future therapeutic interventions in delayed or abnormal wound healing may be improved by a thorough understanding of the relationship between clinical, cellular, and subcellular events occurring during the normal healing process. A review of the wound healing literature from the past several decades, with a focus on the past 5 to 10 years in particular, along with illustrative case examples from our clinical practice over the past decade. Traditional clinical stages of wounding healing are still relevant, but more overlap between stages is likely a more accurate depiction of events. The role of cells such as platelets, macrophages, leukocytes, fibroblasts, endothelial cells, and keratinocytes is much better known, particularly during the inflammatory and proliferation stages of healing. Molecules such as interferon, integrins, proteoglycans and glycosaminoglycans, matrix metalloproteinases, and other regulatory cytokines play a critical role in the regulation of healing mechanisms. Cutaneous wound healing in normal hosts follows an orderly clinical process. The scientific underpinnings for healing are better understood than ever, although much remains to be discovered. Eventually, such improved understanding of cellular and subcellular physiology may lead to new or better forms of therapy for patients with acute, chronic, and surgical skin wounds.

          Related collections

          Most cited references87

          • Record: found
          • Abstract: found
          • Article: not found

          How matrix metalloproteinases regulate cell behavior.

          The matrix metalloproteinases (MMPs) constitute a multigene family of over 25 secreted and cell surface enzymes that process or degrade numerous pericellular substrates. Their targets include other proteinases, proteinase inhibitors, clotting factors, chemotactic molecules, latent growth factors, growth factor-binding proteins, cell surface receptors, cell-cell adhesion molecules, and virtually all structural extracellular matrix proteins. Thus MMPs are able to regulate many biologic processes and are closely regulated themselves. We review recent advances that help to explain how MMPs work, how they are controlled, and how they influence biologic behavior. These advances shed light on how the structure and function of the MMPs are related and on how their transcription, secretion, activation, inhibition, localization, and clearance are controlled. MMPs participate in numerous normal and abnormal processes, and there are new insights into the key substrates and mechanisms responsible for regulating some of these processes in vivo. Our knowledge in the field of MMP biology is rapidly expanding, yet we still do not fully understand how these enzymes regulate most processes of development, homeostasis, and disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Angiogenesis in wound healing.

            During wound healing, angiogenic capillary sprouts invade the fibrin/fibronectin-rich wound clot and within a few days organize into a microvascular network throughout the granulation tissue. As collagen accumulates in the granulation tissue to produce scar, the density of blood vessels diminishes. A dynamic interaction occurs among endothelial cells, angiogenic cytokines, such as FGF, VEGF, TGF-beta, angiopoietin, and mast cell tryptase, and the extracellular matrix (ECM) environment. Specific endothelial cell ECM receptors are critical for these morphogenetic changes in blood vessels during wound repair. In particular, alpha(v)beta3, the integrin receptor for fibrin and fibronectin, appears to be required for wound angiogenesis: alpha(v)beta3 is expressed on the tips of angiogenic capillary sprouts invading the wound clot, and functional inhibitors of alpha(v)beta3 transiently inhibit granulation tissue formation. Recent investigations have shown that the wound ECM can regulate angiogenesis in part by modulating integrin receptor expression. mRNA levels of alpha(v)beta3 in human dermal microvascular endothelial cells either plated on fibronectin or overlaid by fibrin gel were higher than in cells plated on collagen or overlaid by collagen gel. Wound angiogenesis also appears to be regulated by endothelial cell interaction with the specific three-dimensional ECM environment in the wound space. In an in vitro model of human sprout angiogenesis, three-dimensional fibrin gel, simulating early wound clot, but not collagen gel, simulating late granulation tissue, supported capillary sprout formation. Understanding the molecular mechanisms that regulate wound angiogenesis, particularly how ECM modulates ECM receptor and angiogenic factor requirements, may provide new approaches for treating chronic wounds.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair.

              The host response to tissue injury requires a complex interplay of diverse cellular, humoral, and connective tissue elements. Fibroblasts participate in this process by proliferating within injured sites and contributing to scar formation and the longterm remodeling of damaged tissue. Fibroblasts present in areas of tissue injury generally have been regarded to arise by recruitment from surrounding connective tissue; however this may not be the only source of these cells. Long-term culture of adherent, human, and murine leukocyte subpopulations was combined with a variety of immunofluorescence and functional analyses to identify a blood-borne cell type with fibroblast-like properties. We describe for the first time a population of circulating cells with fibroblast properties that specifically enter sites of tissue injury. This novel cell type, termed a "fibrocyte," was characterized by its distinctive phenotype (collagen+/vimentin+/CD34+), by its rapid entry from blood into subcutaneously implanted wound chambers, and by its presence in connective tissue scars. Blood-borne fibrocytes contribute to scar formation and may play an important role both in normal wound repair and in pathological fibrotic responses.
                Bookmark

                Author and article information

                Journal
                Dermatologic Surgery
                Dermatologic Surgery
                Wiley
                10760512
                June 2005
                March 21 2006
                : 31
                : 6
                : 674-686
                Article
                10.1111/j.1524-4725.2005.31612
                15996419
                dae6ca3c-34cf-49a4-ac68-9d64cf237781
                © 2006
                History

                Comments

                Comment on this article