14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ongoing Transposon-Mediated Genome Reduction in the Luminous Bacterial Symbionts of Deep-Sea Ceratioid Anglerfishes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Diverse marine fish and squid form symbiotic associations with extracellular bioluminescent bacteria. These symbionts are typically free-living bacteria with large genomes, but one known lineage of symbionts has undergone genomic reduction and evolution of host dependence. It is not known why distinct evolutionary trajectories have occurred among different luminous symbionts, and not all known lineages previously had genome sequences available. In order to better understand patterns of evolution across diverse bioluminescent symbionts, we de novo sequenced the genomes of bacteria from a poorly studied interaction, the extracellular symbionts from the “lures” of deep-sea ceratioid anglerfishes. Deep-sea anglerfish symbiont genomes are reduced in size by about 50% compared to free-living relatives. They show a striking convergence of genome reduction and loss of metabolic capabilities with a distinct lineage of obligately host-dependent luminous symbionts. These losses include reductions in amino acid synthesis pathways and abilities to utilize diverse sugars. However, the symbiont genomes have retained a number of categories of genes predicted to be useful only outside the host, such as those involved in chemotaxis and motility, suggesting that they may persist in the environment. These genomes contain very high numbers of pseudogenes and show massive expansions of transposable elements, with transposases accounting for 28 and 31% of coding sequences in the symbiont genomes. Transposon expansions appear to have occurred at different times in each symbiont lineage, indicating either independent evolutions of reduction or symbiont replacement. These results suggest ongoing genomic reduction in extracellular luminous symbionts that is facilitated by transposon proliferations.

          IMPORTANCE

          Many female deep-sea anglerfishes possess a “lure” containing luminous bacterial symbionts. Here we show that unlike most luminous symbionts, these bacteria are undergoing an evolutionary transition toward small genomes with limited metabolic capabilities. Comparative analyses of the symbiont genomes indicate that this transition is ongoing and facilitated by transposon expansions. This transition may have occurred independently in different symbiont lineages, although it is unclear why. Genomic reduction is common in bacteria that only live within host cells but less common in bacteria that, like anglerfish symbionts, live outside host cells. Since multiple evolutions of genomic reduction have occurred convergently in luminous bacteria, they make a useful system with which to understand patterns of genome evolution in extracellular symbionts. This work demonstrates that ecological factors other than an intracellular lifestyle can lead to dramatic gene loss and evolutionary changes and that transposon expansions may play important roles in this process.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          ISfinder: the reference centre for bacterial insertion sequences

          ISfinder () is a dedicated database for bacterial insertion sequences (ISs). It has superseded the Stanford reference center. One of its functions is to assign IS names and to provide a focal point for a coherent nomenclature. It is also the repository for ISs. Each new IS is indexed together with information such as its DNA sequence and open reading frames or potential coding sequences, the sequence of the ends of the element and target sites, its origin and distribution together with a bibliography where available. Another objective is to continuously monitor ISs to provide updated comprehensive groupings or families and to provide some insight into their phylogenies. The site also contains extensive background information on ISs and transposons in general. Online tools are gradually being added. At present an online Blast facility against the entire bank is available. But additional features will include alignment capability, PsiBLAST and HMM profiles. ISfinder also includes a section on bacterial genomes and is involved in annotating the IS content of these genomes. Finally, this database is currently recommended by several microbiology journals for registration of new IS elements before their publication.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Extreme genome reduction in symbiotic bacteria.

            Since 2006, numerous cases of bacterial symbionts with extraordinarily small genomes have been reported. These organisms represent independent lineages from diverse bacterial groups. They have diminutive gene sets that rival some mitochondria and chloroplasts in terms of gene numbers and lack genes that are considered to be essential in other bacteria. These symbionts have numerous features in common, such as extraordinarily fast protein evolution and a high abundance of chaperones. Together, these features point to highly degenerate genomes that retain only the most essential functions, often including a considerable fraction of genes that serve the hosts. These discoveries have implications for the concept of minimal genomes, the origins of cellular organelles, and studies of symbiosis and host-associated microbiota.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              50 million years of genomic stasis in endosymbiotic bacteria.

              Comparison of two fully sequenced genomes of Buchnera aphidicola, the obligate endosymbionts of aphids, reveals the most extreme genome stability to date: no chromosome rearrangements or gene acquisitions have occurred in the past 50 to 70 million years, despite substantial sequence evolution and the inactivation and loss of individual genes. In contrast, the genomes of their closest free-living relatives, Escherichia coli and Salmonella spp., are more than 2000-fold more labile in content and gene order. The genomic stasis of B. aphidicola, likely attributable to the loss of phages, repeated sequences, and recA, indicates that B. aphidicola is no longer a source of ecological innovation for its hosts.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                mBio
                MBio
                mbio
                mbio
                mBio
                mBio
                American Society for Microbiology (1752 N St., N.W., Washington, DC )
                2150-7511
                26 June 2018
                May-Jun 2018
                : 9
                : 3
                : e01033-18
                Affiliations
                [a ]Department of Microbiology, Cornell University, Ithaca, New York, USA
                [b ]Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Dania Beach, Florida, USA
                [c ]Department of Conservation and Research, San Antonio Zoo, San Antonio, Texas, USA
                University of Texas at Austin
                Author notes
                Address correspondence to Tory A. Hendry, th572@ 123456cornell.edu .
                Author information
                https://orcid.org/0000-0002-8001-1783
                Article
                mBio01033-18
                10.1128/mBio.01033-18
                6020299
                29946051
                daef2e5a-80e2-4b40-99ca-347291949c85
                Copyright © 2018 Hendry et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

                History
                : 8 May 2018
                : 25 May 2018
                Page count
                supplementary-material: 10, Figures: 4, Tables: 4, Equations: 0, References: 77, Pages: 16, Words: 9804
                Funding
                Funded by: The Gulf of Mexico Research Initiative;
                Award Recipient : Award Recipient : Award Recipient : Award Recipient :
                Categories
                Research Article
                Custom metadata
                May/June 2018

                Life sciences
                bioluminescence,evolution,genome reduction,symbiosis,transposons
                Life sciences
                bioluminescence, evolution, genome reduction, symbiosis, transposons

                Comments

                Comment on this article