6
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Tocilizumab Treatment for Cytokine Release Syndrome in Hospitalized Patients With Coronavirus Disease 2019 : Survival and Clinical Outcomes

      research-article
      , MD a , e , , , MD b , f , , PhD g , , MBBS b , , MD b , , MD c , , MD b , , PharmD h , , PhD g , , MD b , , MD d , , MD a , , MD a , , MD, PhD b , , PharmD h , , MS i , , MD d , , MD b , , MD b , , MD a , , MD j , , MD d , , MD, PhD a , , MD d , , MD, PhD c , , DO, PhD k , , MD b , h , , MD, PhD d , , MD b
      Chest
      American College of Chest Physicians
      COVID-19, cytokine release syndrome, disease severity, mechanical ventilation, survival, tocilizumab, COVID-19, coronavirus disease 2019, CRS, cytokine release syndrome, hs-CRP, high-sensitivity C-reactive protein, IL-6R, IL-6 receptor, MV, mechanical ventilation, sIL2R, soluble IL-2 receptor, Spo2, oxygen saturation

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Tocilizumab, an IL-6 receptor antagonist, can be used to treat cytokine release syndrome (CRS), with observed improvements in a coronavirus disease 2019 (COVID-19) case series.

          Research Question

          The goal of this study was to determine if tocilizumab benefits patients hospitalized with COVID-19.

          Study Design and Methods

          This observational study of consecutive COVID-19 patients hospitalized between March 10, 2020, and March 31, 2020, and followed up through April 21, 2020, was conducted by chart review. Patients were treated with tocilizumab using an algorithm that targeted CRS. Survival and mechanical ventilation (MV) outcomes were reported for 14 days and stratified according to disease severity designated at admission (severe, ≥ 3 L supplemental oxygen to maintain oxygen saturation > 93%). For tocilizumab-treated patients, pre/post analyses of clinical response, biomarkers, and safety outcomes were assessed. Post hoc survival analyses were conducted for race/ethnicity.

          Results

          Among the 239 patients, median age was 64 years; 36% and 19% were black and Hispanic, respectively. Hospital census increased exponentially, yet MV census did not. Severe disease was associated with lower survival (78% vs 93%; P < .001), greater proportion requiring MV (44% vs 5%; P < .001), and longer median MV days (5.5 vs 1.0; P = .003). Tocilizumab-treated patients (n = 153 [64%]) comprised 90% of those with severe disease; 44% of patients with nonsevere disease received tocilizumab for evolving CRS. Tocilizumab-treated patients with severe disease had higher admission levels of high-sensitivity C-reactive protein (120 vs 71 mg/L; P < .001) and received tocilizumab sooner (2 vs 3 days; P < .001), but their survival was similar to that of patients with nonsevere disease (83% vs 91%; P = .11). For tocilizumab-treated patients requiring MV, survival was 75% (95% CI, 64-89). Following tocilizumab treatment, few adverse events occurred, and oxygenation and inflammatory biomarkers (eg, high-sensitivity C-reactive protein, IL-6) improved; however, D-dimer and soluble IL-2 receptor (also termed CD25) levels increased significantly. Survival in black and Hispanic patients, after controlling for age, was significantly higher than in white patients (log-rank test, P = .002).

          Interpretation

          A treatment algorithm that included tocilizumab to target CRS may influence MV and survival outcomes. In tocilizumab-treated patients, oxygenation and inflammatory biomarkers improved, with higher than expected survival. Randomized trials must confirm these findings.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study

          Summary Background An ongoing outbreak of pneumonia associated with the severe acute respiratory coronavirus 2 (SARS-CoV-2) started in December, 2019, in Wuhan, China. Information about critically ill patients with SARS-CoV-2 infection is scarce. We aimed to describe the clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia. Methods In this single-centered, retrospective, observational study, we enrolled 52 critically ill adult patients with SARS-CoV-2 pneumonia who were admitted to the intensive care unit (ICU) of Wuhan Jin Yin-tan hospital (Wuhan, China) between late December, 2019, and Jan 26, 2020. Demographic data, symptoms, laboratory values, comorbidities, treatments, and clinical outcomes were all collected. Data were compared between survivors and non-survivors. The primary outcome was 28-day mortality, as of Feb 9, 2020. Secondary outcomes included incidence of SARS-CoV-2-related acute respiratory distress syndrome (ARDS) and the proportion of patients requiring mechanical ventilation. Findings Of 710 patients with SARS-CoV-2 pneumonia, 52 critically ill adult patients were included. The mean age of the 52 patients was 59·7 (SD 13·3) years, 35 (67%) were men, 21 (40%) had chronic illness, 51 (98%) had fever. 32 (61·5%) patients had died at 28 days, and the median duration from admission to the intensive care unit (ICU) to death was 7 (IQR 3–11) days for non-survivors. Compared with survivors, non-survivors were older (64·6 years [11·2] vs 51·9 years [12·9]), more likely to develop ARDS (26 [81%] patients vs 9 [45%] patients), and more likely to receive mechanical ventilation (30 [94%] patients vs 7 [35%] patients), either invasively or non-invasively. Most patients had organ function damage, including 35 (67%) with ARDS, 15 (29%) with acute kidney injury, 12 (23%) with cardiac injury, 15 (29%) with liver dysfunction, and one (2%) with pneumothorax. 37 (71%) patients required mechanical ventilation. Hospital-acquired infection occurred in seven (13·5%) patients. Interpretation The mortality of critically ill patients with SARS-CoV-2 pneumonia is considerable. The survival time of the non-survivors is likely to be within 1–2 weeks after ICU admission. Older patients (>65 years) with comorbidities and ARDS are at increased risk of death. The severity of SARS-CoV-2 pneumonia poses great strain on critical care resources in hospitals, especially if they are not adequately staffed or resourced. Funding None.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            COVID-19: consider cytokine storm syndromes and immunosuppression

            As of March 12, 2020, coronavirus disease 2019 (COVID-19) has been confirmed in 125 048 people worldwide, carrying a mortality of approximately 3·7%, 1 compared with a mortality rate of less than 1% from influenza. There is an urgent need for effective treatment. Current focus has been on the development of novel therapeutics, including antivirals and vaccines. Accumulating evidence suggests that a subgroup of patients with severe COVID-19 might have a cytokine storm syndrome. We recommend identification and treatment of hyperinflammation using existing, approved therapies with proven safety profiles to address the immediate need to reduce the rising mortality. Current management of COVID-19 is supportive, and respiratory failure from acute respiratory distress syndrome (ARDS) is the leading cause of mortality. 2 Secondary haemophagocytic lymphohistiocytosis (sHLH) is an under-recognised, hyperinflammatory syndrome characterised by a fulminant and fatal hypercytokinaemia with multiorgan failure. In adults, sHLH is most commonly triggered by viral infections 3 and occurs in 3·7–4·3% of sepsis cases. 4 Cardinal features of sHLH include unremitting fever, cytopenias, and hyperferritinaemia; pulmonary involvement (including ARDS) occurs in approximately 50% of patients. 5 A cytokine profile resembling sHLH is associated with COVID-19 disease severity, characterised by increased interleukin (IL)-2, IL-7, granulocyte-colony stimulating factor, interferon-γ inducible protein 10, monocyte chemoattractant protein 1, macrophage inflammatory protein 1-α, and tumour necrosis factor-α. 6 Predictors of fatality from a recent retrospective, multicentre study of 150 confirmed COVID-19 cases in Wuhan, China, included elevated ferritin (mean 1297·6 ng/ml in non-survivors vs 614·0 ng/ml in survivors; p 39·4°C 49 Organomegaly None 0 Hepatomegaly or splenomegaly 23 Hepatomegaly and splenomegaly 38 Number of cytopenias * One lineage 0 Two lineages 24 Three lineages 34 Triglycerides (mmol/L) 4·0 mmol/L 64 Fibrinogen (g/L) >2·5 g/L 0 ≤2·5 g/L 30 Ferritin ng/ml 6000 ng/ml 50 Serum aspartate aminotransferase <30 IU/L 0 ≥30 IU/L 19 Haemophagocytosis on bone marrow aspirate No 0 Yes 35 Known immunosuppression † No 0 Yes 18 The Hscore 11 generates a probability for the presence of secondary HLH. HScores greater than 169 are 93% sensitive and 86% specific for HLH. Note that bone marrow haemophagocytosis is not mandatory for a diagnosis of HLH. HScores can be calculated using an online HScore calculator. 11 HLH=haemophagocytic lymphohistiocytosis. * Defined as either haemoglobin concentration of 9·2 g/dL or less (≤5·71 mmol/L), a white blood cell count of 5000 white blood cells per mm3 or less, or platelet count of 110 000 platelets per mm3 or less, or all of these criteria combined. † HIV positive or receiving longterm immunosuppressive therapy (ie, glucocorticoids, cyclosporine, azathioprine).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area

              There is limited information describing the presenting characteristics and outcomes of US patients requiring hospitalization for coronavirus disease 2019 (COVID-19).
                Bookmark

                Author and article information

                Journal
                Chest
                Chest
                Chest
                American College of Chest Physicians
                0012-3692
                1931-3543
                15 June 2020
                October 2020
                15 June 2020
                : 158
                : 4
                : 1397-1408
                Affiliations
                [a ]Section of Rheumatology, Allergy & Immunology, Yale University School of Medicine, New Haven, CT
                [b ]Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT
                [c ]Section of Hematology, Yale University School of Medicine, New Haven, CT
                [d ]Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT
                [e ]Department of Allergy and Immunology, VA Medical Center, West Haven, CT
                [f ]Division of Epidemiology of Microbial Diseases, Yale University School of Public Health, New Haven, CT
                [g ]Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
                [h ]Department of Pharmacy Services, Yale New Haven Hospital, New Haven, CT
                [i ]Section of Breast Oncology, Yale Cancer Center, New Haven, CT
                [j ]Section of Hematology, Yale Cancer Center, New Haven, CT
                [k ]Department of Medical Oncology, Yale Cancer Center, New Haven, CT
                Author notes
                [] CORRESPONDENCE TO: Christina C. Price, MD, TAC S469c, 333 Cedar St, New Haven, CT 06510
                Article
                S0012-3692(20)31670-6
                10.1016/j.chest.2020.06.006
                7831876
                32553536
                daefa389-c67b-41be-9aac-53b0a4f97367

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                Categories
                Chest Infections: Original Research

                Respiratory medicine
                covid-19,cytokine release syndrome,disease severity,mechanical ventilation,survival,tocilizumab,covid-19, coronavirus disease 2019,crs, cytokine release syndrome,hs-crp, high-sensitivity c-reactive protein,il-6r, il-6 receptor,mv, mechanical ventilation,sil2r, soluble il-2 receptor,spo2, oxygen saturation

                Comments

                Comment on this article