13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Antibacterial activities of ethanol extracts of Philippine medicinal plants against multidrug-resistant bacteria

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria.

          Efflux pump genes and proteins are present in both antibiotic-susceptible and antibiotic-resistant bacteria. Pumps may be specific for one substrate or may transport a range of structurally dissimilar compounds (including antibiotics of multiple classes); such pumps can be associated with multiple drug (antibiotic) resistance (MDR). However, the clinical relevance of efflux-mediated resistance is species, drug, and infection dependent. This review focuses on chromosomally encoded pumps in bacteria that cause infections in humans. Recent structural data provide valuable insights into the mechanisms of drug transport. MDR efflux pumps contribute to antibiotic resistance in bacteria in several ways: (i) inherent resistance to an entire class of agents, (ii) inherent resistance to specific agents, and (iii) resistance conferred by overexpression of an efflux pump. Enhanced efflux can be mediated by mutations in (i) the local repressor gene, (ii) a global regulatory gene, (iii) the promoter region of the transporter gene, or (iv) insertion elements upstream of the transporter gene. Some data suggest that resistance nodulation division systems are important in pathogenicity and/or survival in a particular ecological niche. Inhibitors of various efflux pump systems have been described; typically these are plant alkaloids, but as yet no product has been marketed.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A status review on the medicinal properties of essential oils

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antimicrobial and phytochemical studies on 45 Indian medicinal plants against multi-drug resistant human pathogens.

              Ethanolic extracts of 45 Indian medicinal plants traditionally used in medicine were studied for their antimicrobial activity against certain drug-resistant bacteria and a yeast Candida albicans of clinical origin. Of these, 40 plant extracts showed varied levels of antimicrobial activity against one or more test bacteria. Anticandidal activity was detected in 24 plant extracts. Overall, broad-spectrum antimicrobial activity was observed in 12 plants (L. inermis, Eucalyptus sp., H. antidysentrica, H. indicus, C. equistifolia. T. belerica, T. chebula, E. officinalis, C. sinensis, S. aromaticum and P. granatum). No correlation was observed between susceptibility of test strains with plant extracts and antibiotic resistance behaviour of the microbial strains (Staphylococcus aureus, Salmonella paratyphi, Shigella dysenteriae, Escherichia coli, Bacillus subtilis, Candida albicans). Qualitative phytochemical tests, thin layer chromatography and TLC-bioautography of certain active extracts demonstrated the presence of common phytocompounds in the plant extracts including phenols, tannins and flavonoids as major active constituents.
                Bookmark

                Author and article information

                Journal
                Asian Pacific Journal of Tropical Biomedicine
                Asian Pacific Journal of Tropical Biomedicine
                Elsevier BV
                22211691
                July 2015
                July 2015
                : 5
                : 7
                : 532-540
                Article
                10.1016/j.apjtb.2015.04.005
                daf1a872-3df2-4479-8940-08827a06df58
                © 2015
                History

                Comments

                Comment on this article