20
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      Are you tired of sifting through news that doesn't interest you?
      Personalize your Karger newsletter today and get only the news that matters to you!

      Sign up

      • Record: found
      • Abstract: found
      • Article: found

      Cellular Pharmacology and Molecular Biology of the Trabecular Meshwork Inducible glucocorticoid Response Gene Product

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Studies of the effects of glucocorticoid (GC) and oxidative stress stimuli in differentiated cultures of human trabecular meshwork (HTM) cells have provided the rationale for our studies of a major new gene termed TIGR (trabecular meshwork inducible GC response). The TIGR clone was isolated by differential library screening using selection criteria based on the induction pattern of a new protein/glycoprotein found in HTM cultures after prolonged but not brief exposure to GCs. This GC induction patter matched the time course and dose response required for intraocular pressure elevation in patients receiving corticosteroids. The very large, progressive induction of TIGR combined with specific structural features of its cDNA suggested that TIGR should be considered a candidate gene for outflow obstruction in glaucoma. Among the properties of TIGR cDNA were a signal sequence for secretion, several structural features for interactions with glycosaminoglycans and other glycoproteins and putative sites for cell surface interactions. In addition, the leucine zippers in the structure were related to TIGR-TIGR oligomerization that was shown to occur with native and recombinant TIGR protein. The verification that TIGR was a major stress response protein in HTM cells following hydrogen peroxide (or phorbol esters) exposure provided a potential link between GC and oxidative mechanisms thought to be involved in glaucoma pathogenesis. Pharmacological evaluation showed that basic fíbroblast growth factory and transforming growth factor β decreased the GC induction of TIGR, and certain nonsteroidal anti-inflammatory drugs protected against both GC- and oxidation-induced stress responses in HTM cells. Our recent studies of TIGR’s genomic structure have shown motifs in the promoter region that suggest a basis by which multiple hormonal/environmental stimuli can regulate TIGR production and by which putative genetic alterations could lead to an overexpression of the protein. Further application of cell biology/biochemistry, molecular biology, genetic and histological approaches will be helpful in understanding the role of TIGR in different glaucoma syndromes.

          Related collections

          Author and article information

          Journal
          OPH
          Ophthalmologica
          10.1159/issn.0030-3755
          Ophthalmologica
          S. Karger AG
          0030-3755
          1423-0267
          1997
          1997
          01 April 2010
          : 211
          : 3
          : 126-139
          Affiliations
          aDepartment of Ophthalmology, Cellular Pharmacology and Molecular Biology Laboratories, UCSF Medical Center, San Francisco, Calif., bDepartment of Ophthalmology, Mayo Clinic, Rochester, Minn., and cDepartment of Ophthalmology, University of Michigan, Ann Arbor, Mich., USA; dDepartment of Anatomy, University of Erlangen-Nürnberg, Erlangen, Germany
          Article
          310780 Ophthalmologica 1997;211:126–139
          10.1159/000310780
          9176893
          daf1aa31-6f70-4467-ba58-6dc67d942ec4
          © 1997 S. Karger AG, Basel

          Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

          History
          Page count
          Pages: 14
          Categories
          Perspectives in Glaucoma Research

          Vision sciences,Ophthalmology & Optometry,Pathology
          Oxidative stress,Genetic defects,Glucocorticoids,Cell culture,Trabecular meshwork,Pharmacology

          Comments

          Comment on this article