47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Drug Combinations against Borrelia burgdorferi Persisters In Vitro: Eradication Achieved by Using Daptomycin, Cefoperazone and Doxycycline

      research-article
      1 , 2 , 1 , *
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although most Lyme disease patients can be cured with antibiotics doxycycline or amoxicillin using 2-4 week treatment durations, some patients suffer from persistent arthritis or post-treatment Lyme disease syndrome. Why these phenomena occur is unclear, but possibilities include host responses, antigenic debris, or B. burgdorferi organisms remaining despite antibiotic therapy. In vitro, B. burgdorferi developed increasing antibiotic tolerance as morphology changed from typical spirochetal form in log phase growth to variant round body and microcolony forms in stationary phase. B. burgdorferi appeared to have higher persister frequencies than E. coli as a control as measured by SYBR Green I/propidium iodide (PI) viability stain and microscope counting. To more effectively eradicate the different persister forms tolerant to doxycycline or amoxicillin, drug combinations were studied using previously identified drugs from an FDA-approved drug library with high activity against such persisters. Using a SYBR Green/PI viability assay, daptomycin-containing drug combinations were the most effective. Of studied drugs, daptomycin was the common element in the most active regimens when combined with doxycycline plus either beta-lactams (cefoperazone or carbenicillin) or an energy inhibitor (clofazimine). Daptomycin plus doxycycline and cefoperazone eradicated the most resistant microcolony form of B. burgdorferi persisters and did not yield viable spirochetes upon subculturing, suggesting durable killing that was not achieved by any other two or three drug combinations. These findings may have implications for improved treatment of Lyme disease, if persistent organisms or detritus are responsible for symptoms that do not resolve with conventional therapy. Further studies are needed to validate whether such combination antimicrobial approaches are useful in animal models and human infection.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Persister cells and tolerance to antimicrobials.

          Bacterial populations produce persister cells that neither grow nor die in the presence of microbicidal antibiotics. Persisters are largely responsible for high levels of biofilm tolerance to antimicrobials, but virtually nothing was known about their biology. Tolerance of Escherichia coli to ampicillin and ofloxacin was tested at different growth stages to gain insight into the nature of persisters. The number of persisters did not change in lag or early exponential phase, and increased dramatically in mid-exponential phase. Similar dynamics were observed with Pseudomonas aeruginosa (ofloxacin) and Staphylococcus aureus (ciprofloxacin and penicillin). This shows that production of persisters depends on growth stage. Maintaining a culture of E. coli at early exponential phase by reinoculation eliminated persisters. This suggests that persisters are not at a particular stage in the cell cycle, neither are they defective cells nor cells created in response to antibiotics. Our data indicate that persisters are specialized survivor cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Daptomycin-mediated reorganization of membrane architecture causes mislocalization of essential cell division proteins.

            Daptomycin is a lipopeptide antibiotic used clinically for the treatment of certain types of Gram-positive infections, including those caused by methicillin-resistant Staphylococcus aureus (MRSA). Details of the mechanism of action of daptomycin continue to be elucidated, particularly the question of whether daptomycin acts on the cell membrane, the cell wall, or both. Here, we use fluorescence microscopy to directly visualize the interaction of daptomycin with the model Gram-positive bacterium Bacillus subtilis. We show that the first observable cellular effects are the formation of membrane distortions (patches of membrane) that precede cell death by more than 30 min. Membrane patches are able to recruit the essential cell division protein DivIVA. Recruitment of DivIVA correlates with membrane defects and changes in cell morphology, suggesting a localized alteration in the activity of enzymes involved in cell wall synthesis that could account for previously described effects of daptomycin on cell wall morphology and septation. Membrane defects colocalize with fluorescently labeled daptomycin, DivIVA, and fluorescent reporters of peptidoglycan biogenesis (Bocillin FL and BODIPY FL-vancomycin), suggesting that daptomycin plays a direct role in these events. Our results support a mechanism for daptomycin with a primary effect on cell membranes that in turn redirects the localization of proteins involved in cell division and cell wall synthesis, causing dramatic cell wall and membrane defects, which may ultimately lead to a breach in the cell membrane and cell death. These results help resolve the longstanding questions regarding the mechanism of action of this important class of antibiotics.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Persistence of Borrelia burgdorferi in Rhesus Macaques following Antibiotic Treatment of Disseminated Infection

              The persistence of symptoms in Lyme disease patients following antibiotic therapy, and their causes, continue to be a matter of intense controversy. The studies presented here explore antibiotic efficacy using nonhuman primates. Rhesus macaques were infected with B. burgdorferi and a portion received aggressive antibiotic therapy 4–6 months later. Multiple methods were utilized for detection of residual organisms, including the feeding of lab-reared ticks on monkeys (xenodiagnosis), culture, immunofluorescence and PCR. Antibody responses to the B. burgdorferi-specific C6 diagnostic peptide were measured longitudinally and declined in all treated animals. B. burgdorferi antigen, DNA and RNA were detected in the tissues of treated animals. Finally, small numbers of intact spirochetes were recovered by xenodiagnosis from treated monkeys. These results demonstrate that B. burgdorferi can withstand antibiotic treatment, administered post-dissemination, in a primate host. Though B. burgdorferi is not known to possess resistance mechanisms and is susceptible to the standard antibiotics (doxycycline, ceftriaxone) in vitro, it appears to become tolerant post-dissemination in the primate host. This finding raises important questions about the pathogenicity of antibiotic-tolerant persisters and whether or not they can contribute to symptoms post-treatment.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                2015
                25 March 2015
                : 10
                : 3
                : e0117207
                Affiliations
                [1 ]Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
                [2 ]Fisher Center for Environmental Infectious Diseases, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
                University of North Dakota School of Medicine and Health Sciences, UNITED STATES
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: YZ JF. Performed the experiments: JF. Analyzed the data: JF YZ PA. Wrote the paper: JF YZ PA.

                Article
                PONE-D-14-44226
                10.1371/journal.pone.0117207
                4373819
                25806811
                daf84d7a-a216-40c7-a833-2b1b293f333d
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 1 October 2014
                : 19 December 2014
                Page count
                Figures: 3, Tables: 3, Pages: 15
                Funding
                Lyme Research Alliance (Tick Borne Disease Alliance) http://www.lymeresearchalliance.org/ The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article