Blog
About

0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Influence of storage conditions on the structure, thermal behavior, and formation of enzyme-resistant starch in extruded starches.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Starch structures from an extrusion process were stored at different temperatures to allow for molecular rearrangement (retrogradation); their thermal characteristics (DSC) and resistance to amylase digestion were measured and compared. The structure of four native and processed starches containing different amylose/amylopectin compositions (3.5, 30.8, 32, and 80% amylose content, respectively) before and after digestion was studied with small-angle X-ray scattering (SAXS) and X-ray diffraction (XRD). Rearrangement of the amylose molecules was observed for each storage condition as measured by the DSC endotherm at around 145 degrees C. The crystalline organization of the starches after processing and storage was qualitatively different to that of the native starches. However, there was no direct correlation between the initial crystallinity and the amount of enzyme-resistant starch (ERS) measured after in vitro digestion, and only in the case of high-amylose starch did the postprocess conditioning used lead to a small increase in the amount of starch remaining after the enzymatic treatment. From the results obtained, it can be concluded that retrograded amylose is not directly correlated with ERS and alternative mechanisms must be responsible for ERS formation.

          Related collections

          Author and article information

          Journal
          J. Agric. Food Chem.
          Journal of agricultural and food chemistry
          American Chemical Society (ACS)
          0021-8561
          0021-8561
          Nov 28 2007
          : 55
          : 24
          Affiliations
          [1 ] Food Science Australia, North Ryde, New South Wales, Australia.
          Article
          10.1021/jf071974e
          17960881

          Comments

          Comment on this article