12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Global optimization of clusters of rigid molecules using the artificial bee colony algorithm

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The global optimization of molecular clusters is an important topic encountered in many fields of chemistry. Our free and black-box software ABCluster is a useful tool in solving this problem.

          Abstract

          The global optimization of molecular clusters is an important topic encountered in many fields of chemistry. In our previous work ( Phys. Chem. Chem. Phys., 2015, 17, 24173), we successfully applied the recently introduced artificial bee colony (ABC) algorithm to the global optimization of atomic clusters and introduced the corresponding software “ABCluster”. In the present work, ABCluster was extended to the optimization of clusters of rigid molecules. Here “rigid” means that all internal degrees of freedom of the constituent molecules are frozen. The algorithm was benchmarked by TIP4P water clusters (H 2O) N ( N ≤ 20), for which all global minima were successfully located. It was further applied to various clusters of different chemical nature: 10 microhydration clusters, 4 methanol microsolvation clusters, 4 nonpolar clusters and 2 ion–aromatic clusters. In all the cases we obtained results consistent with previous experimental or theoretical studies.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu.

          The method of dispersion correction as an add-on to standard Kohn-Sham density functional theory (DFT-D) has been refined regarding higher accuracy, broader range of applicability, and less empiricism. The main new ingredients are atom-pairwise specific dispersion coefficients and cutoff radii that are both computed from first principles. The coefficients for new eighth-order dispersion terms are computed using established recursion relations. System (geometry) dependent information is used for the first time in a DFT-D type approach by employing the new concept of fractional coordination numbers (CN). They are used to interpolate between dispersion coefficients of atoms in different chemical environments. The method only requires adjustment of two global parameters for each density functional, is asymptotically exact for a gas of weakly interacting neutral atoms, and easily allows the computation of atomic forces. Three-body nonadditivity terms are considered. The method has been assessed on standard benchmark sets for inter- and intramolecular noncovalent interactions with a particular emphasis on a consistent description of light and heavy element systems. The mean absolute deviations for the S22 benchmark set of noncovalent interactions for 11 standard density functionals decrease by 15%-40% compared to the previous (already accurate) DFT-D version. Spectacular improvements are found for a tripeptide-folding model and all tested metallic systems. The rectification of the long-range behavior and the use of more accurate C(6) coefficients also lead to a much better description of large (infinite) systems as shown for graphene sheets and the adsorption of benzene on an Ag(111) surface. For graphene it is found that the inclusion of three-body terms substantially (by about 10%) weakens the interlayer binding. We propose the revised DFT-D method as a general tool for the computation of the dispersion energy in molecules and solids of any kind with DFT and related (low-cost) electronic structure methods for large systems.
            • Record: found
            • Abstract: not found
            • Article: not found

            Comparison of simple potential functions for simulating liquid water

              • Record: found
              • Abstract: found
              • Article: not found

              Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy.

              Gaussian basis sets of quadruple zeta valence quality for Rb-Rn are presented, as well as bases of split valence and triple zeta valence quality for H-Rn. The latter were obtained by (partly) modifying bases developed previously. A large set of more than 300 molecules representing (nearly) all elements-except lanthanides-in their common oxidation states was used to assess the quality of the bases all across the periodic table. Quantities investigated were atomization energies, dipole moments and structure parameters for Hartree-Fock, density functional theory and correlated methods, for which we had chosen Møller-Plesset perturbation theory as an example. Finally recommendations are given which type of basis set is used best for a certain level of theory and a desired quality of results.

                Author and article information

                Journal
                PPCPFQ
                Physical Chemistry Chemical Physics
                Phys. Chem. Chem. Phys.
                Royal Society of Chemistry (RSC)
                1463-9076
                1463-9084
                2016
                2016
                : 18
                : 4
                : 3003-3010
                Affiliations
                [1 ]Theoretical Chemistry
                [2 ]University of Cologne
                [3 ]50939 Cologne
                [4 ]Germany
                Article
                10.1039/C5CP06313B
                26738568
                db3dd68f-d418-4d6b-8d55-d1cc99a4c662
                © 2016
                History

                Comments

                Comment on this article

                Related Documents Log