24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Synaptic inhibition and γ-aminobutyric acid in the mammalian central nervous system

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Signal transmission through synapses connecting two neurons is mediated by release of neurotransmitter from the presynaptic axon terminals and activation of its receptor at the postsynaptic neurons. γ-Aminobutyric acid (GABA), non-protein amino acid formed by decarboxylation of glutamic acid, is a principal neurotransmitter at inhibitory synapses of vertebrate and invertebrate nervous system. On one hand glutamic acid serves as a principal excitatory neurotransmitter. This article reviews GABA researches on; (1) synaptic inhibition by membrane hyperpolarization, (2) exclusive localization in inhibitory neurons, (3) release from inhibitory neurons, (4) excitatory action at developmental stage, (5) phenotype of GABA-deficient mouse produced by gene-targeting, (6) developmental adjustment of neural network and (7) neurological/psychiatric disorder. In the end, GABA functions in simple nervous system and plants, and non-amino acid neurotransmitters were supplemented.

          Related collections

          Most cited references76

          • Record: found
          • Abstract: found
          • Article: not found

          Cortical inhibitory neurons and schizophrenia.

          Impairments in certain cognitive functions, such as working memory, are core features of schizophrenia. Convergent findings indicate that a deficiency in signalling through the TrkB neurotrophin receptor leads to reduced GABA (gamma-aminobutyric acid) synthesis in the parvalbumin-containing subpopulation of inhibitory GABA neurons in the dorsolateral prefrontal cortex of individuals with schizophrenia. Despite both pre- and postsynaptic compensatory responses, the resulting alteration in perisomatic inhibition of pyramidal neurons contributes to a diminished capacity for the gamma-frequency synchronized neuronal activity that is required for working memory function. These findings reveal specific targets for therapeutic interventions to improve cognitive function in individuals with schizophrenia.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations.

            Developing networks follow common rules to shift from silent cells to coactive networks that operate via thousands of synapses. This review deals with some of these rules and in particular those concerning the crucial role of the neurotransmitter gamma-aminobuytric acid (GABA), which operates primarily via chloride-permeable GABA(A) receptor channels. In all developing animal species and brain structures investigated, neurons have a higher intracellular chloride concentration at an early stage leading to an efflux of chloride and excitatory actions of GABA in immature neurons. This triggers sodium spikes, activates voltage-gated calcium channels, and acts in synergy with NMDA channels by removing the voltage-dependent magnesium block. GABA signaling is also established before glutamatergic transmission, suggesting that GABA is the principal excitatory transmitter during early development. In fact, even before synapse formation, GABA signaling can modulate the cell cycle and migration. The consequence of these rules is that developing networks generate primitive patterns of network activity, notably the giant depolarizing potentials (GDPs), largely through the excitatory actions of GABA and its synergistic interactions with glutamate signaling. These early types of network activity are likely required for neurons to fire together and thus to "wire together" so that functional units within cortical networks are formed. In addition, depolarizing GABA has a strong impact on synaptic plasticity and pathological insults, notably seizures of the immature brain. In conclusion, it is suggested that an evolutionary preserved role for excitatory GABA in immature cells provides an important mechanism in the formation of synapses and activity in neuronal networks.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Is there more to GABA than synaptic inhibition?

              In the mature brain, GABA (gamma-aminobutyric acid) functions primarily as an inhibitory neurotransmitter. But it can also act as a trophic factor during nervous system development to influence events such as proliferation, migration, differentiation, synapse maturation and cell death. GABA mediates these processes by the activation of traditional ionotropic and metabotropic receptors, and probably by both synaptic and non-synaptic mechanisms. However, the functional properties of GABA receptor signalling in the immature brain are significantly different from, and in some ways opposite to, those found in the adult brain. The unique features of the early-appearing GABA signalling systems might help to explain how GABA acts as a developmental signal.
                Bookmark

                Author and article information

                Journal
                Proc Jpn Acad Ser B Phys Biol Sci
                Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci
                PJAB
                Proceedings of the Japan Academy. Series B, Physical and Biological Sciences
                The Japan Academy (Tokyo, Japan )
                0386-2208
                1349-2896
                11 April 2013
                : 89
                : 4
                : 139-156
                Affiliations
                [*1 ]National Institute for Physiological Sciences, Okazaki, Japan.
                Author notes
                []Correspondence should be addressed: Daimon 3-25-13, Okazaki, Aichi 444-2135, Japan (e-mail: obak37@ 123456email.plala.or.jp ).

                (Communicated by Masanori OTSUKA, M.J.A.)

                Article
                pjab-89-139
                10.2183/pjab.89.139
                3669732
                23574805
                db3ebdbe-b037-43cb-9bda-22ae43bc9861
                © 2013 The Japan Academy

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 25 November 2012
                : 25 February 2013
                Categories
                Review

                Life sciences
                neurotransmitter,gaba,gene targeting,brain development,mental disorders
                Life sciences
                neurotransmitter, gaba, gene targeting, brain development, mental disorders

                Comments

                Comment on this article