100
views
0
recommends
+1 Recommend
0 collections
    16
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Radiation therapy is one of the major tools of cancer treatment, and is widely used for a variety of malignant tumours. Radiotherapy causes DNA damage directly by ionization or indirectly via the generation of reactive oxygen species (ROS), thereby destroying cancer cells. However, ionizing radiation (IR) paradoxically promotes metastasis and invasion of cancer cells by inducing the epithelial-mesenchymal transition (EMT). Metastasis is a major obstacle to successful cancer therapy, and is closely linked to the rates of morbidity and mortality of many cancers. ROS have been shown to play important roles in mediating the biological effects of IR. ROS have been implicated in IR-induced EMT, via activation of several EMT transcription factors—including Snail, HIF-1, ZEB1, and STAT3—that are activated by signalling pathways, including those of TGF-β, Wnt, Hedgehog, Notch, G-CSF, EGFR/PI3K/Akt, and MAPK. Cancer cells that undergo EMT have been shown to acquire stemness and undergo metabolic changes, although these points are debated. IR is known to induce cancer stem cell (CSC) properties, including dedifferentiation and self-renewal, and to promote oncogenic metabolism by activating these EMT-inducing pathways. Much accumulated evidence has shown that metabolic alterations in cancer cells are closely associated with the EMT and CSC phenotypes; specifically, the IR-induced oncogenic metabolism seems to be required for acquisition of the EMT and CSC phenotypes. IR can also elicit various changes in the tumour microenvironment (TME) that may affect invasion and metastasis. EMT, CSC, and oncogenic metabolism are involved in radioresistance; targeting them may improve the efficacy of radiotherapy, preventing tumour recurrence and metastasis. This study focuses on the molecular mechanisms of IR-induced EMT, CSCs, oncogenic metabolism, and alterations in the TME. We discuss how IR-induced EMT/CSC/oncogenic metabolism may promote resistance to radiotherapy; we also review efforts to develop therapeutic approaches to eliminate these IR-induced adverse effects.

          Related collections

          Most cited references238

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of pancreatic cancer stem cells.

          Emerging evidence has suggested that the capability of a tumor to grow and propagate is dependent on a small subset of cells within a tumor, termed cancer stem cells. Although data have been provided to support this theory in human blood, brain, and breast cancers, the identity of pancreatic cancer stem cells has not been determined. Using a xenograft model in which primary human pancreatic adenocarcinomas were grown in immunocompromised mice, we identified a highly tumorigenic subpopulation of pancreatic cancer cells expressing the cell surface markers CD44, CD24, and epithelial-specific antigen (ESA). Pancreatic cancer cells with the CD44(+)CD24(+)ESA(+) phenotype (0.2-0.8% of pancreatic cancer cells) had a 100-fold increased tumorigenic potential compared with nontumorigenic cancer cells, with 50% of animals injected with as few as 100 CD44(+)CD24(+)ESA(+) cells forming tumors that were histologically indistinguishable from the human tumors from which they originated. The enhanced ability of CD44(+)CD24(+)ESA(+) pancreatic cancer cells to form tumors was confirmed in an orthotopic pancreatic tail injection model. The CD44(+)CD24(+)ESA(+) pancreatic cancer cells showed the stem cell properties of self-renewal, the ability to produce differentiated progeny, and increased expression of the developmental signaling molecule sonic hedgehog. Identification of pancreatic cancer stem cells and further elucidation of the signaling pathways that regulate their growth and survival may provide novel therapeutic approaches to treat pancreatic cancer, which is notoriously resistant to standard chemotherapy and radiation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mutant p53: one name, many proteins.

            There is now strong evidence that mutation not only abrogates p53 tumor-suppressive functions, but in some instances can also endow mutant proteins with novel activities. Such neomorphic p53 proteins are capable of dramatically altering tumor cell behavior, primarily through their interactions with other cellular proteins and regulation of cancer cell transcriptional programs. Different missense mutations in p53 may confer unique activities and thereby offer insight into the mutagenic events that drive tumor progression. Here we review mechanisms by which mutant p53 exerts its cellular effects, with a particular focus on the burgeoning mutant p53 transcriptome, and discuss the biological and clinical consequences of mutant p53 gain of function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The response of CD24(-/low)/CD44+ breast cancer-initiating cells to radiation.

              If cancer arises and is maintained by a small population of cancer-initiating cells within every tumor, understanding how these cells react to cancer treatment will facilitate improvement of cancer treatment in the future. Cancer-initiating cells can now be prospectively isolated from breast cancer cell lines and tumor samples and propagated as mammospheres in vitro under serum-free conditions. CD24(-/low)/CD44+ cancer-initiating cells were isolated from MCF-7 and MDA-MB-231 breast cancer monolayer cultures and propagated as mammospheres. Their response to radiation was investigated by assaying clonogenic survival and by measuring reactive oxygen species (ROS) levels, phosphorylation of the replacement histone H2AX, CD44 levels, CD24 levels, and Notch-1 activation using flow cytometry. All statistical tests were two-sided. Cancer-initiating cells were more resistant to radiation than cells grown as monolayer cultures (MCF-7: monolayer cultures, mean surviving fraction at 2 Gy [SF(2Gy)] = 0.2, versus mammospheres, mean SF(2Gy) = 0.46, difference = 0.26, 95% confidence interval [CI] = 0.05 to 0.47; P = .026; MDA-MB-231: monolayer cultures, mean SF(2Gy) = 0.5, versus mammospheres, mean SF(2Gy) = 0.69, difference = 0.19, 95% CI = -0.07 to 0.45; P = .09). Levels of ROS increased in both mammospheres and monolayer cultures after irradiation with a single dose of 10 Gy but were lower in mammospheres than in monolayer cultures (MCF-7 monolayer cultures: 0 Gy, mean = 1.0, versus 10 Gy, mean = 3.32, difference = 2.32, 95% CI = 0.67 to 3.98; P = .026; mammospheres: 0 Gy, mean = 0.58, versus 10 Gy, mean = 1.46, difference = 0.88, 95% CI = 0.20 to 1.56; P = .031); phosphorylation of H2AX increased in irradiated monolayer cultures, but no change was observed in mammospheres. Fractionated doses of irradiation increased activation of Notch-1 (untreated, mean = 10.7, versus treated, mean = 15.1, difference = 4.4, 95% CI = 2.7 to 6.1, P = .002) and the percentage of the cancer stem/initiating cells in the nonadherent cell population of MCF-7 monolayer cultures (untreated, mean = 3.52%, versus treated, mean = 7.5%, difference = 3.98%, 95% CI = 1.67% to 6.25%, P = .009). Breast cancer-initiating cells are a relatively radioresistant subpopulation of breast cancer cells and increase in numbers after short courses of fractionated irradiation. These findings offer a possible mechanism for the accelerated repopulation of tumor cells observed during gaps in radiotherapy.
                Bookmark

                Author and article information

                Contributors
                82-51-510-2275 , hspkang@pusan.ac.kr
                Journal
                Mol Cancer
                Mol. Cancer
                Molecular Cancer
                BioMed Central (London )
                1476-4598
                30 January 2017
                30 January 2017
                2017
                : 16
                : 10
                Affiliations
                [1 ]Department of Molecular Biology, College of Natural Sciences, Pusan National University, Pusan, 609-735 Korea
                [2 ]Research Center, Dongnam Institute of Radiological and Medical Science (DIRAMS), Pusan, 619-953 Korea
                [3 ]DNA Identification Center, National Forensic Service, Seoul, 158-707 Korea
                [4 ]Nanobiotechnology Center, Pusan National University, Pusan, 609-735 Korea
                [5 ]The Division of Natural Medical Sciences, College of Health Science, Chosun University, Gwangju, 501-759 Korea
                Article
                577
                10.1186/s12943-016-0577-4
                5282724
                28137309
                db4e544e-8b8d-4f9c-b54c-5e7ca2e0c40b
                © The Author(s). 2017

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 4 November 2016
                : 25 December 2016
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100003725, National Research Foundation of Korea;
                Award ID: 2011-0011084
                Award ID: 2012M2B2A9A02029802
                Award ID: 2013M2B2A9A03050902
                Award ID: 2015M2B2A9028108
                Award ID: 2012R1A1A2044246
                Award ID: 2015R1A2A2A01004468
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100003625, Ministry of Health and Welfare;
                Award ID: 1320040
                Award Recipient :
                Categories
                Review
                Custom metadata
                © The Author(s) 2017

                Oncology & Radiotherapy
                radiotherapy,epithelial-mesenchymal transition,metastasis,cancer stem cells,oncogenic metabolism,tumour microenvironment,reactive oxygen species,radioresistance,snail

                Comments

                Comment on this article