17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Regulation of Toll-Like Receptor (TLR) Signaling Pathway by Polyphenols in the Treatment of Age-Linked Neurodegenerative Diseases: Focus on TLR4 Signaling

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neuronal dysfunction initiates several intracellular signaling cascades to release different proinflammatory cytokines and chemokines, as well as various reactive oxygen species. In addition to neurons, microglia, and astrocytes are also affected by this signaling cascade. This release can either be helpful, neutral or detrimental for cell survival. Toll-like receptors (TLRs) activate and signal their downstream pathway to activate NF-κB and pro-IL-1β, both of which are responsible for neuroinflammation and linked to the pathogenesis of different age-related neurological conditions. However, herein, recent aspects of polyphenols in the treatment of neurodegenerative diseases are assessed, with a focus on TLR regulation by polyphenols. Different polyphenol classes, including flavonoids, phenolic acids, phenolic alcohols, stilbenes, and lignans can potentially target TLR signaling in a distinct pathway. Further, some polyphenols can suppress overexpression of inflammatory mediators through TLR4/NF-κB/STAT signaling intervention, while others can reduce neuronal apoptosis via modulating the TLR4/MyD88/NF-κB-pathway in microglia/macrophages. Indeed, neurodegeneration etiology is complex and yet to be completely understood, it may be that targeting TLRs could reveal a number of molecular and pharmacological aspects related to neurodegenerative diseases. Thus, activating TLR signaling modulation via natural resources could provide new therapeutic potentiality in the treatment of neurodegeneration.

          Related collections

          Most cited references162

          • Record: found
          • Abstract: found
          • Article: not found

          Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance.

          Polyphenols constitute one of the most numerous and ubiquitous groups of plant metabolites and are an integral part of both human and animal diets. Ranging from simple phenolic molecules to highly polymerized compounds with molecular weights of greater than 30,000 Da, the occurrence of this complex group of substances in plant foods is extremely variable. Polyphenols traditionally have been considered antinutrients by animal nutritionists, because of the adverse effect of tannins, one type of polyphenol, on protein digestibility. However, recent interest in food phenolics has increased greatly, owing to their antioxidant capacity (free radical scavenging and metal chelating activities) and their possible beneficial implications in human health, such as in the treatment and prevention of cancer, cardiovascular disease, and other pathologies. Much of the literature refers to a single group of plant phenolics, the flavonoids. This review offers an overview of the nutritional effects of the main groups of polyphenolic compounds, including their metabolism, effects on nutrient bioavailability, and antioxidant activity, as well as a brief description of the chemistry of polyphenols and their occurrence in plant foods.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The role of inflammation in CNS injury and disease.

            For many years, the central nervous system (CNS) was considered to be 'immune privileged', neither susceptible to nor contributing to inflammation. It is now appreciated that the CNS does exhibit features of inflammation, and in response to injury, infection or disease, resident CNS cells generate inflammatory mediators, including proinflammatory cytokines, prostaglandins, free radicals and complement, which in turn induce chemokines and adhesion molecules, recruit immune cells, and activate glial cells. Much of the key evidence demonstrating that inflammation and inflammatory mediators contribute to acute, chronic and psychiatric CNS disorders is summarised in this review. However, inflammatory mediators may have dual roles, with detrimental acute effects but beneficial effects in long-term repair and recovery, leading to complications in their application as novel therapies. These may be avoided in acute diseases in which treatment administration might be relatively short-term. Targeting interleukin (IL)-1 is a promising novel therapy for stroke and traumatic brain injury, the naturally occurring antagonist (IL-1ra) being well tolerated by rheumatoid arthritis patients. Chronic disorders represent a greater therapeutic challenge, a problem highlighted in Alzheimer's disease (AD); significant data suggested that anti-inflammatory agents might reduce the probability of developing AD, or slow its progression, but prospective clinical trials of nonsteroidal anti-inflammatory drugs or cyclooxygenase inhibitors have been disappointing. The complex interplay between inflammatory mediators, ageing, genetic background, and environmental factors may ultimately regulate the outcome of acute CNS injury and progression of chronic neurodegeneration, and be critical for development of effective therapies for CNS diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Innate immune recognition: mechanisms and pathways.

              The innate immune system is an evolutionarily ancient form of host defense found in most multicellular organisms. Inducible responses of the innate immune system are triggered upon pathogen recognition by a set of pattern recognition receptors. These receptors recognize conserved molecular patterns shared by large groups of microorganisms. Recognition of these patterns allows the innate immune system not only to detect the presence of an infectious microbe, but also to determine the type of the infecting pathogen. Pattern recognition receptors activate conserved host defense signaling pathways that control the expression of a variety of immune response genes.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                10 May 2019
                2019
                : 10
                : 1000
                Affiliations
                [1] 1Department of Applied Life Science & Integrated Bioscience, Graduate School, Konkuk University , Chungju-si, South Korea
                [2] 2Department of Integrated Bioscience & Biotechnology, Research Institute of Inflammatory Disease (RID), College of Biomedical and Health Science, Konkuk University , Chungju-si, South Korea
                Author notes

                Edited by: Alexander G. Haslberger, University of Vienna, Austria

                Reviewed by: Matteo A. Russo, San Raffaele Pisana (IRCCS), Italy; Francisco José Pérez-Cano, University of Barcelona, Spain

                *Correspondence: Dong-Kug Choi choidk@ 123456kku.ac.kr

                This article was submitted to Nutritional Immunology, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2019.01000
                6522942
                31134076
                db5f8421-284b-44ab-9fa9-3eb41a92b9d1
                Copyright © 2019 Azam, Jakaria, Kim, Kim, Haque and Choi.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 15 February 2019
                : 18 April 2019
                Page count
                Figures: 3, Tables: 4, Equations: 0, References: 200, Pages: 17, Words: 13661
                Categories
                Immunology
                Review

                Immunology
                polyphenols,myd88,toll-like receptor,nf-κb,neurodegenerative disease,inflammasome
                Immunology
                polyphenols, myd88, toll-like receptor, nf-κb, neurodegenerative disease, inflammasome

                Comments

                Comment on this article