12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      In vitro bioaccessibility of proteins and lipids of pH-shift processed Nannochloropsis oculata microalga.

      1 , 1 , 1
      Food & function
      Royal Society of Chemistry (RSC)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The pH-shift process fractionates biomass into soluble proteins and insoluble fractions, followed by precipitation and recovery of the solubilized proteins. Nannochloropsis oculata in seawater was subjected to the pH-shift process, followed by digestion of various intermediates and product fractions of the process, using the Infogest in vitro digestion model (Minekus et al., 2014) with added gastric lipase. As measures for protein and lipid accessibility, degrees of protein hydrolysis and fatty acid liberation were assessed post-digestion and compared to the amounts of peptide bonds and total fatty acids present in the raw materials. Results showed that neither proteins nor lipids of intact Nannochloropsis cells were accessible to the mammalian digestive enzymes used in the digestion model. Cell disruption, and to a lesser extent, further pH-shift processing with protein solubilisation at pH 7 or pH 10, increased the accessibility of lipids. For proteins, differences amongst the pH-shift processed materials were non-significant, though pre-freezing the product prior to digestion increased the accessibility from 32% to 47%. For fatty acids, pH-shift process-products gave rise to 43% to 52% lipolysis, with higher lipolysis for products solubilised at pH 10 as opposed to pH 7. Our results indicate the importance of processing to produce an algal product that has beneficial nutritional properties when applied as food or feed.

          Related collections

          Author and article information

          Journal
          Food Funct
          Food & function
          Royal Society of Chemistry (RSC)
          2042-650X
          2042-6496
          Apr 2016
          : 7
          : 4
          Affiliations
          [1 ] Chalmers University of Technology, Biology and Biological Engineering, Kemigården 4, Gothenburg, Sweden. lillie@chalmers.se.
          Article
          10.1039/c5fo01144b
          27045666
          db617715-8e84-4097-8577-87708a2e1b14
          History

          Comments

          Comment on this article