38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Ctenophore relationships and their placement as the sister group to all other animals

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ctenophora, compromising approximately 200 described species, is an important lineage for understanding metazoan evolution and is of great ecological and economic importance. Ctenophore diversity includes species with unique colloblasts used for prey capture, smooth and striated muscles, benthic and pelagic lifestyles, and locomotion with ciliated paddles or muscular propulsion. However, ancestral states of traits are debated and relationships among many lineages are unresolved. Here, using 27 newly sequenced ctenophore transcriptomes, publicly available data, and methods to control systematic error we establish the placement of Ctenophora as the sister group to all other animals and refine phylogenetic relationships within ctenophores. Molecular clock analyses suggest modern ctenophore diversity originated approximately 350MYA ± 88 MY, conflicting with previous hypotheses of approximately 65 MYA. We recover Euplokamis dunlapae, a species with striated muscles, as the sister lineage to other sampled ctenophores. Ancestral state reconstruction shows the most recent common ancestor of extant ctenophores was pelagic, possessed tentacles, was bioluminescent, and did not have separate sexes. Our results imply at least two transitions from a pelagic to a benthic lifestyle within Ctenophora, suggesting such transitions were more common in animal diversification than appreciated.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          Testing for phylogenetic signal in comparative data: behavioral traits are more labile.

          The primary rationale for the use of phylogenetically based statistical methods is that phylogenetic signal, the tendency for related species to resemble each other, is ubiquitous. Whether this assertion is true for a given trait in a given lineage is an empirical question, but general tools for detecting and quantifying phylogenetic signal are inadequately developed. We present new methods for continuous-valued characters that can be implemented with either phylogenetically independent contrasts or generalized least-squares models. First, a simple randomization procedure allows one to test the null hypothesis of no pattern of similarity among relatives. The test demonstrates correct Type I error rate at a nominal alpha = 0.05 and good power (0.8) for simulated datasets with 20 or more species. Second, we derive a descriptive statistic, K, which allows valid comparisons of the amount of phylogenetic signal across traits and trees. Third, we provide two biologically motivated branch-length transformations, one based on the Ornstein-Uhlenbeck (OU) model of stabilizing selection, the other based on a new model in which character evolution can accelerate or decelerate (ACDC) in rate (e.g., as may occur during or after an adaptive radiation). Maximum likelihood estimation of the OU (d) and ACDC (g) parameters can serve as tests for phylogenetic signal because an estimate of d or g near zero implies that a phylogeny with little hierarchical structure (a star) offers a good fit to the data. Transformations that improve the fit of a tree to comparative data will increase power to detect phylogenetic signal and may also be preferable for further comparative analyses, such as of correlated character evolution. Application of the methods to data from the literature revealed that, for trees with 20 or more species, 92% of traits exhibited significant phylogenetic signal (randomization test), including behavioral and ecological ones that are thought to be relatively evolutionarily malleable (e.g., highly adaptive) and/or subject to relatively strong environmental (nongenetic) effects or high levels of measurement error. Irrespective of sample size, most traits (but not body size, on average) showed less signal than expected given the topology, branch lengths, and a Brownian motion model of evolution (i.e., K was less than one), which may be attributed to adaptation and/or measurement error in the broad sense (including errors in estimates of phenotypes, branch lengths, and topology). Analysis of variance of log K for all 121 traits (from 35 trees) indicated that behavioral traits exhibit lower signal than body size, morphological, life-history, or physiological traits. In addition, physiological traits (corrected for body size) showed less signal than did body size itself. For trees with 20 or more species, the estimated OU (25% of traits) and/or ACDC (40%) transformation parameter differed significantly from both zero and unity, indicating that a hierarchical tree with less (or occasionally more) structure than the original better fit the data and so could be preferred for comparative analyses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Stochastic mapping of morphological characters.

            Many questions in evolutionary biology are best addressed by comparing traits in different species. Often such studies involve mapping characters on phylogenetic trees. Mapping characters on trees allows the nature, number, and timing of the transformations to be identified. The parsimony method is the only method available for mapping morphological characters on phylogenies. Although the parsimony method often makes reasonable reconstructions of the history of a character, it has a number of limitations. These limitations include the inability to consider more than a single change along a branch on a tree and the uncoupling of evolutionary time from amount of character change. We extended a method described by Nielsen (2002, Syst. Biol. 51:729-739) to the mapping of morphological characters under continuous-time Markov models and demonstrate here the utility of the method for mapping characters on trees and for identifying character correlation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The genome of the ctenophore Mnemiopsis leidyi and its implications for cell type evolution.

              An understanding of ctenophore biology is critical for reconstructing events that occurred early in animal evolution. Toward this goal, we have sequenced, assembled, and annotated the genome of the ctenophore Mnemiopsis leidyi. Our phylogenomic analyses of both amino acid positions and gene content suggest that ctenophores rather than sponges are the sister lineage to all other animals. Mnemiopsis lacks many of the genes found in bilaterian mesodermal cell types, suggesting that these cell types evolved independently. The set of neural genes in Mnemiopsis is similar to that of sponges, indicating that sponges may have lost a nervous system. These results present a newly supported view of early animal evolution that accounts for major losses and/or gains of sophisticated cell types, including nerve and muscle cells.
                Bookmark

                Author and article information

                Journal
                101698577
                46074
                Nat Ecol Evol
                Nat Ecol Evol
                Nature ecology & evolution
                2397-334X
                21 September 2017
                09 October 2017
                November 2017
                01 May 2018
                : 1
                : 11
                : 1737-1746
                Affiliations
                [1 ]Molette Biology Laboratory for Environmental and Climate Change Studies, Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
                [2 ]Warm Springs Fish Technology Center, U.S. Fish and Wildlife Service, 5308 Spring ST, Warm Springs, GA 31830, USA
                [3 ]Department of Biological Sciences, University of Alabama, Box 870344, Tuscaloosa, AL 35487, USA
                [4 ]The Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL 32080, USA
                [5 ]Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
                [6 ]Department of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
                Author notes
                Material and Correspondence: Nathan V. Whelan, nathan_whelan@ 123456fws.gov (primary correspondence); Leonid L. Moroz, moroz@ 123456ufl.edu ; Kenneth M. Halanych, ken@ 123456auburn.edu
                Article
                NASAPA903558
                10.1038/s41559-017-0331-3
                5664179
                28993654
                db667635-0bd7-4670-aa70-f792965435b3

                Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Comments

                Comment on this article