18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mechanisms of Fish Macrophage Antimicrobial Immunity

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Overcrowding conditions and temperatures shifts regularly manifest in large-scale infections of farmed fish, resulting in economic losses for the global aquaculture industries. Increased understanding of the functional mechanisms of fish antimicrobial host defenses is an important step forward in prevention of pathogen-induced morbidity and mortality in aquaculture setting. Like other vertebrates, macrophage-lineage cells are integral to fish immune responses and for this reason, much of the recent fish immunology research has focused on fish macrophage biology. These studies have revealed notable similarities as well as striking differences in the molecular strategies by which fish and higher vertebrates control their respective macrophage polarization and functionality. In this review, we address the current understanding of the biological mechanisms of teleost macrophage functional heterogeneity and immunity, focusing on the key cytokine regulators that control fish macrophage development and their antimicrobial armamentarium.

          Related collections

          Most cited references330

          • Record: found
          • Abstract: found
          • Article: not found

          Nitric oxide and macrophage function.

          At the interface between the innate and adaptive immune systems lies the high-output isoform of nitric oxide synthase (NOS2 or iNOS). This remarkable molecular machine requires at least 17 binding reactions to assemble a functional dimer. Sustained catalysis results from the ability of NOS2 to attach calmodulin without dependence on elevated Ca2+. Expression of NOS2 in macrophages is controlled by cytokines and microbial products, primarily by transcriptional induction. NOS2 has been documented in macrophages from human, horse, cow, goat, sheep, rat, mouse, and chicken. Human NOS2 is most readily observed in monocytes or macrophages from patients with infectious or inflammatory diseases. Sustained production of NO endows macrophages with cytostatic or cytotoxic activity against viruses, bacteria, fungi, protozoa, helminths, and tumor cells. The antimicrobial and cytotoxic actions of NO are enhanced by other macrophage products such as acid, glutathione, cysteine, hydrogen peroxide, or superoxide. Although the high-output NO pathway probably evolved to protect the host from infection, suppressive effects on lymphocyte proliferation and damage to other normal host cells confer upon NOS2 the same protective/destructive duality inherent in every other major component of the immune response.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Disseminated tuberculosis in interferon gamma gene-disrupted mice

            The expression of protective immunity to Mycobacterium tuberculosis in mice is mediated by T lymphocytes that secrete cytokines. These molecules then mediate a variety of roles, including the activation of parasitized host macrophages, and the recruitment of other mononuclear phagocytes to the site of the infection in order to initiate granuloma formation. Among these cytokines, interferon gamma (IFN-gamma) is believed to play a key role is these events. In confirmation of this hypothesis, we show in this study that mice in which the IFN-gamma gene has been disrupted were unable to contain or control a normally sublethal dose of M. tuberculosis, delivered either intravenously or aerogenically. In such mice, a progressive and widespread tissue destruction and necrosis, associated with very high numbers of acid- fast bacilli, was observed. In contrast, despite the lack of protective immunity, some DTH-like reactivity could still be elicited. These data, therefore, indicate that although IFN-gamma may not be needed for DTH expression, it plays a pivotal and essential role in protective cellular immunity to tuberculosis infection.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The genome sequence of Atlantic cod reveals a unique immune system.

              Atlantic cod (Gadus morhua) is a large, cold-adapted teleost that sustains long-standing commercial fisheries and incipient aquaculture. Here we present the genome sequence of Atlantic cod, showing evidence for complex thermal adaptations in its haemoglobin gene cluster and an unusual immune architecture compared to other sequenced vertebrates. The genome assembly was obtained exclusively by 454 sequencing of shotgun and paired-end libraries, and automated annotation identified 22,154 genes. The major histocompatibility complex (MHC) II is a conserved feature of the adaptive immune system of jawed vertebrates, but we show that Atlantic cod has lost the genes for MHC II, CD4 and invariant chain (Ii) that are essential for the function of this pathway. Nevertheless, Atlantic cod is not exceptionally susceptible to disease under natural conditions. We find a highly expanded number of MHC I genes and a unique composition of its Toll-like receptor (TLR) families. This indicates how the Atlantic cod immune system has evolved compensatory mechanisms in both adaptive and innate immunity in the absence of MHC II. These observations affect fundamental assumptions about the evolution of the adaptive immune system and its components in vertebrates.
                Bookmark

                Author and article information

                Contributors
                URI : https://frontiersin.org/people/u/560515
                URI : https://frontiersin.org/people/u/65096
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                28 May 2018
                2018
                : 9
                : 1105
                Affiliations
                [1] 1Department of Biological Sciences, George Washington University , Washington, DC, United States
                [2] 2Department of Biological Sciences, University of Alberta , Edmonton, AB, Canada
                Author notes

                Edited by: Brian Dixon, University of Waterloo, Canada

                Reviewed by: Geert Wiegertjes, Wageningen University & Research, Netherlands; Uwe Fischer, Friedrich Loeffler Institute Greifswald, Germany

                *Correspondence: Miodrag Belosevic, mike.belosevic@ 123456ualberta.ca

                Specialty section: This article was submitted to Comparative Immunology, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2018.01105
                5985312
                29892285
                db66e388-f502-4f61-9aed-a175b4be20e6
                Copyright © 2018 Grayfer, Kerimoglu, Yaparla, Hodgkinson, Xie and Belosevic.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 09 February 2018
                : 02 May 2018
                Page count
                Figures: 5, Tables: 0, Equations: 0, References: 378, Pages: 22, Words: 20009
                Funding
                Funded by: Natural Sciences and Engineering Research Council of Canada 10.13039/501100000038
                Award ID: RGPIN-2014-06395
                Categories
                Immunology
                Review

                Immunology
                teleost,monocyte,macrophages,antimicrobial,cytokine,respiratory burst,nitric oxide,nutrient depravation

                Comments

                Comment on this article