0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Risk bases can complement dose bases for implementing and optimising a radiological protection strategy in urgent and transition emergency phases

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Current radiological emergency response recommendations have been provided by the International Commission on Radiological Protection and adopted by the International Atomic Energy Agency in comprehensive Safety Standards. These standards provide dose-based guidance for decision making (e.g., on sheltering or relocation) via generic criteria in terms of effective dose in the range from 20 mSv per year, during transition from emergency to existing exposure situation, to 100 mSv, acute or annual, in the urgent phase of a nuclear accident. The purpose of this paper was to examine how such dose reference levels directly translate into radiation-related risks of the main stochastic detrimental health effects (cancer). Methodologies, provided by the World Health Organization after the Fukushima accident, for calculating the lifetime and 20 year cancer risks and for attributing relevant organ doses from effective doses, have been applied here for this purpose with new software, designed to be available for use immediately after a nuclear accident. A new feature in this software is a comprehensive accounting for uncertainty via simulation technique, so that the risks may now be presented with realistic confidence intervals. The types of cancer risks considered here are time-integrated over lifetime and the first 20 years after exposure for all solid cancers and either the most radiation-sensitive types of cancer, i.e., leukaemia and female breast cancer, or the most radiation-relevant type of cancer occurring early in life, i.e., thyroid. It is demonstrated here how reference dose levels translate differently into specific cancer risk levels (with varying confidence interval sizes), depending on age at exposure, gender, time-frame at-risk and type of cancer considered. This demonstration applies German population data and considers external exposures. Further work is required to comprehensively extend this methodology to internal exposures that are likely to be important in the early stages of a nuclear accident. A discussion is provided here on the potential for such risk-based information to be used by decision makers, in the urgent and transition phases of nuclear emergencies, to identify protective measures (e.g., sheltering, evacuation) in a differential way (i.e., for particularly susceptible sub-groups of a population).

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found

          Radiation dose rates now and in the future for residents neighboring restricted areas of the Fukushima Daiichi Nuclear Power Plant.

          Radiation dose rates were evaluated in three areas neighboring a restricted area within a 20- to 50-km radius of the Fukushima Daiichi Nuclear Power Plant in August-September 2012 and projected to 2022 and 2062. Study participants wore personal dosimeters measuring external dose equivalents, almost entirely from deposited radionuclides (groundshine). External dose rate equivalents owing to the accident averaged 1.03, 2.75, and 1.66 mSv/y in the village of Kawauchi, the Tamano area of Soma, and the Haramachi area of Minamisoma, respectively. Internal dose rates estimated from dietary intake of radiocesium averaged 0.0058, 0.019, and 0.0088 mSv/y in Kawauchi, Tamano, and Haramachi, respectively. Dose rates from inhalation of resuspended radiocesium were lower than 0.001 mSv/y. In 2012, the average annual doses from radiocesium were close to the average background radiation exposure (2 mSv/y) in Japan. Accounting only for the physical decay of radiocesium, mean annual dose rates in 2022 were estimated as 0.31, 0.87, and 0.53 mSv/y in Kawauchi, Tamano, and Haramachi, respectively. The simple and conservative estimates are comparable with variations in the background dose, and unlikely to exceed the ordinary permissible dose rate (1 mSv/y) for the majority of the Fukushima population. Health risk assessment indicates that post-2012 doses will increase lifetime solid cancer, leukemia, and breast cancer incidences by 1.06%, 0.03% and 0.28% respectively, in Tamano. This assessment was derived from short-term observation with uncertainties and did not evaluate the first-year dose and radioiodine exposure. Nevertheless, this estimate provides perspective on the long-term radiation exposure levels in the three regions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Implications of recent epidemiologic studies for the linear nonthreshold model and radiation protection.

            The recently published NCRP Commentary No. 27 evaluated the new information from epidemiologic studies as to their degree of support for applying the linear nonthreshold (LNT) model of carcinogenic effects for radiation protection purposes (NCRP 2018 Implications of Recent Epidemiologic Studies for the Linear Nonthreshold Model and Radiation Protection, Commentary No. 27 (Bethesda, MD: National Council on Radiation Protection and Measurements)). The aim was to determine whether recent epidemiologic studies of low-LET radiation, particularly those at low doses and/or low dose rates (LD/LDR), broadly support the LNT model of carcinogenic risk or, on the contrary, demonstrate sufficient evidence that the LNT model is inappropriate for the purposes of radiation protection. An updated review was needed because a considerable number of reports of radiation epidemiologic studies based on new or updated data have been published since other major reviews were conducted by national and international scientific committees. The Commentary provides a critical review of the LD/LDR studies that are most directly applicable to current occupational, environmental and medical radiation exposure circumstances. This Memorandum summarises several of the more important LD/LDR studies that incorporate radiation dose responses for solid cancer and leukemia that were reviewed in Commentary No. 27. In addition, an overview is provided of radiation studies of breast and thyroid cancers, and cancer after childhood exposures. Non-cancers are briefly touched upon such as ischemic heart disease, cataracts, and heritable genetic effects. To assess the applicability and utility of the LNT model for radiation protection, the Commentary evaluated 29 epidemiologic studies or groups of studies, primarily of total solid cancer, in terms of strengths and weaknesses in their epidemiologic methods, dosimetry approaches, and statistical modelling, and the degree to which they supported a LNT model for continued use in radiation protection. Recommendations for how to make epidemiologic radiation studies more informative are outlined. The NCRP Committee recognises that the risks from LD/LDR exposures are small and uncertain. The Committee judged that the available epidemiologic data were broadly supportive of the LNT model and that at this time no alternative dose-response relationship appears more pragmatic or prudent for radiation protection purposes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              On the conversion of solid cancer excess relative risk into lifetime attributable risk.

              Risk coefficients representing the lifetime radiation-induced cancer mortality (or incidence) attributable to an exposure to ionizing radiation, have been published by major international scientific committees. The calculations involve observations in an exposed population and choices of a standard population (for risk transportation), of suitable numerical models, and of computational techniques. The present lack of a firm convention for these choices makes it difficult to inter-compare risk estimates presented by different scientific bodies. Some issues that relate to a necessary harmonization and standardization of risk estimates are explored here. Computational methods are discussed and, in line with the approach utilized by ICRP, conversion factors from excess relative risk (ERR) to lifetime attributable risk (LAR) are exemplified for exposures at all ages and for occupational exposures. A standard population is specified to illustrate the possibility of a simplified standard for risk transportation computations. It is suggested that a more realistic perception of lifetime risk could be gained by the use of coefficients scaled to the lifetime spontaneous cancer rates in the standard population. The resulting quantity lifetime fractional risk (LFR) is advantageous also because it depends much less on the choice of the reference population than the lifetime attributable risk (LAR).
                Bookmark

                Author and article information

                Contributors
                linda.walsh@uzh.ch
                Journal
                Radiat Environ Biophys
                Radiat Environ Biophys
                Radiation and Environmental Biophysics
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                0301-634X
                1432-2099
                25 July 2019
                25 July 2019
                2019
                : 58
                : 4
                : 539-552
                Affiliations
                [1 ]GRID grid.7400.3, ISNI 0000 0004 1937 0650, Department of Physics, Science Faculty, , University of Zürich, ; Winterthurerstrasse 190, 8057 Zürich, Switzerland
                [2 ]GRID grid.4567.0, ISNI 0000 0004 0483 2525, Institute of Radiation Medicine, , Helmholtz Zentrum München – German Research Center for Environmental Health, ; Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
                [3 ]GRID grid.420221.7, ISNI 0000 0004 0403 8399, IAEA Laboratories, , International Atomic Energy Agency, ; 2444 Seibersdorf, Austria
                [4 ]GRID grid.7892.4, ISNI 0000 0001 0075 5874, Institute for Nuclear and Energy Technologies, , Karlsruhe Institute of Technology, ; Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
                Author information
                http://orcid.org/0000-0001-7399-9191
                Article
                809
                10.1007/s00411-019-00809-x
                6768908
                31346699
                db703f58-b917-4c39-a033-f70bd3d84137
                © The Author(s) 2019

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 7 December 2018
                : 13 July 2019
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100010687, H2020 Euratom;
                Award ID: 662287
                Award Recipient :
                Categories
                Original Article
                Custom metadata
                © Springer-Verlag GmbH Germany, part of Springer Nature 2019

                Biophysics
                nuclear accidents,health risk assessment,radiological emergency response,radiation protection,lifetime risk

                Comments

                Comment on this article