10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Time-Course Comparative Metabolite Profiling under Osmotic Stress in Tolerant and Sensitive Tibetan Hulless Barley

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tibetan hulless barley is widely grown in the extreme environmental conditions of the Qinghai-Tibet Plateau which is characterized by cold, high salinity, and drought. Osmotic stress always occurs simultaneously with drought and its tolerance is a vital part of drought tolerance. The diversity of metabolites leading to osmotic stress tolerance was characterized using widely-targeted metabolomics in tolerant (XL) and sensitive (D) accessions submitted to polyethylene glycol. XL regulated a more diverse set of metabolites than D, which may promote the establishment of a robust system to cope with the stress in XL. Compounds belonging to the group of flavonoids, amino acids, and glycerophospholipids constitute the core metabolome responsive to the stress, despite the tolerance levels. Moreover, 8 h appeared to be a critical time point for stress endurance involving a high accumulation of key metabolites from the class of nucleotide and its derivative which provide the ultimate energy source for the synthesis of functional carbohydrates, lipids, peptides, and secondary metabolites in XL. This intrinsic metabolic adjustment helped XL to efficiently alleviate the stress at the later stages. A total of 22 diverse compounds were constantly and exclusively regulated in XL, representing novel stress tolerance biomarkers which may help improving stress tolerance, especially drought, in hulless barley.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: not found
          • Book: not found

          The water culture method of growing plants without soil

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulatory metabolic networks in drought stress responses.

            Plants must adapt to drought stress to survive. The phytohormone abscisic acid (ABA) is produced under drought stress conditions and is essential for the response to drought stress. The ABA level plays an important role in the response, and several enzymes for ABA biosynthesis and catabolism have been identified. Physiological studies have shown that several metabolites accumulate and function as osmolytes under drought stress conditions. Many drought-inducible genes with various functions have been identified, and transgenic plants that harbor these genes have shown increased tolerance to drought.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Characterization of the ABA-regulated global responses to dehydration in Arabidopsis by metabolomics.

              Drought is the major environmental threat to agricultural production and distribution worldwide. Adaptation by plants to dehydration stress is a complex biological process that involves global changes in gene expression and metabolite composition. Here, using one type of functional genomics analysis, metabolomics, we characterized the metabolic phenotypes of Arabidopsis wild-type and a knockout mutant of the NCED3 gene (nc3-2) under dehydration stress. NCED3 plays a role in the dehydration-inducible biosynthesis of abscisic acid (ABA), a phytohormone that is important in the dehydration-stress response in higher plants. Metabolite profiling performed using two types of mass spectrometry (MS) systems, gas chromatography/time-of-flight MS (GC/TOF-MS) and capillary electrophoresis MS (CE-MS), revealed that accumulation of amino acids depended on ABA production, but the level of the oligosaccharide raffinose was regulated by ABA independently under dehydration stress. Metabolic network analysis showed that global metabolite-metabolite correlations occurred in dehydration-increased amino acids in wild-type, and strong correlations with raffinose were reconstructed in nc3-2. An integrated metabolome and transcriptome analysis revealed ABA-dependent transcriptional regulation of the biosynthesis of the branched-chain amino acids, saccharopine, proline and polyamine. This metabolomics analysis revealed new molecular mechanisms of dynamic metabolic networks in response to dehydration stress.
                Bookmark

                Author and article information

                Contributors
                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi
                2314-6133
                2314-6141
                2018
                23 December 2018
                : 2018
                : 9415409
                Affiliations
                1State Key Laboratory of Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa 850002, China
                2Institute of Agricultural Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850002, China
                3Wuhan Metware Biotechnology Co., Ltd, Wuhan 430070, China
                4Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
                Author notes

                Academic Editor: Hely M. Häggman

                Author information
                http://orcid.org/0000-0001-6551-473X
                Article
                10.1155/2018/9415409
                6323448
                30671479
                db753616-48b8-43b7-8851-3f90ea6a92ce
                Copyright © 2018 Hongjun Yuan et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 3 September 2018
                : 18 November 2018
                Funding
                Funded by: Financial Special Fund
                Award ID: 2017CZZX001
                Award ID: XZNKY-2018-C-021
                Categories
                Research Article

                Comments

                Comment on this article