31
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparative Transcriptomics Indicates a Role for SHORT VEGETATIVE PHASE ( SVP) Genes in Mimulus guttatus Vernalization Response

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The timing of reproduction in response to variable environmental conditions is critical to plant fitness, and is a major driver of taxon differentiation. In the yellow monkey flower, Mimulus guttatus, geographically distinct North American populations vary in their photoperiod and chilling (vernalization) requirements for flowering, suggesting strong local adaptation to their surroundings. Previous analyses revealed quantitative trait loci (QTL) underlying short-day mediated vernalization responsiveness using two annual M. guttatus populations that differed in their vernalization response. To narrow down candidate genes responsible for this variation, and to reveal potential downstream genes, we conducted comparative transcriptomics and quantitative PCR (qPCR) in shoot apices of parental vernalization responsive IM62, and unresponsive LMC24 inbred lines grown under different photoperiods and temperatures. Our study identified several metabolic, hormone signaling, photosynthetic, stress response, and flowering time genes that are differentially expressed between treatments, suggesting a role for their protein products in short-day-mediated vernalization responsiveness. Only a small subset of these genes intersected with candidate genes from the previous QTL study, and, of the main candidates tested with qPCR under nonpermissive conditions, only SHORT VEGETATIVE PHASE ( SVP) gene expression met predictions for a population-specific short-day-repressor of flowering that is repressed by cold.

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Ontology: tool for the unification of biology

          Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis.

            Precise timing of CONSTANS (CO) gene expression is necessary for day-length discrimination for photoperiodic flowering. The FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (FKF1), and GIGANTEA (GI) proteins regulate CO transcription in Arabidopsis. We demonstrate that FKF1 and GI proteins form a complex in a blue-light-dependent manner. The timing of this interaction regulates the timing of daytime CO expression. FKF1 function is dependent on GI, which interacts with a CO repressor, CYCLING DOF FACTOR 1 (CDF1), and controls CDF1 stability. GI, FKF1, and CDF1 proteins associate with CO chromatin. Thus, the FKF1-GI complex forms on the CO promoter in late afternoon to regulate CO expression, providing a mechanistic view of how the coincidence of light with circadian timing regulates photoperiodic flowering.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis.

              Floral development at the Arabidopsis shoot apical meristem occurs in response to environmental cues that are perceived in different tissues. Photoperiod is detected in the vascular tissue of the leaf (phloem) and promotes production of a systemic signal that induces flowering at the meristem. Vernalization, the response to winter temperatures, overcomes a block on photoperiodic floral induction. In Arabidopsis, this block is caused by inhibitors of flowering that comprise several related MADS-box transcription factors, the most prominent of which is FLC. We show that FLC delays flowering by repressing production in the leaf of at least two systemic signals, one of which is controlled by the RAF kinase inhibitor-like protein FT. Reducing expression of these signals indirectly represses expression of genes involved in floral induction at the meristem. In addition, FLC expression in the meristem impairs response to the FT signal by directly repressing expression of the SOC1 MADS-box transcription factor and preventing up-regulation of the bZIP transcription factor FD. Repression of genes acting at multiple levels in this hierarchy is required for the extreme delay in flowering caused by FLC. An FLC:HA fusion protein binds directly in vivo to the promoter regions of FD and SOC1 and to the first intron of FT. Thus vernalization relieves transcriptional repression of key regulatory genes in both the leaf and meristem, allowing production of systemic signals in the leaves and conferring competence on the meristem to respond to these signals.
                Bookmark

                Author and article information

                Journal
                G3 (Bethesda)
                Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes|Genomes|Genetics
                Genetics Society of America
                2160-1836
                25 February 2016
                May 2016
                : 6
                : 5
                : 1239-1249
                Affiliations
                [* ]Department of Plant Science, University of Vermont, Burlington, Vermont 05405
                []Department of Biology, Syracuse University, New York 13244
                Author notes
                [1 ]Corresponding author: Department of Plant Science, University of Vermont, 63 Carrigan Drive, 111 Jeffords Hall, Burlington, VT 05405. E-mail: Jill.Preston@ 123456uvm.edu
                Article
                GGG_026468
                10.1534/g3.115.026468
                4856076
                26921300
                db84d71b-4884-4d01-9029-622f0aed7002
                Copyright © 2016 Preston et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 19 December 2015
                : 23 February 2016
                Page count
                Figures: 5, Tables: 1, Equations: 0, References: 50, Pages: 11
                Categories
                Investigations

                Genetics
                flowering time,local adaptation,mimulus guttatus,photoperiod,short vegetative phase,vernalization

                Comments

                Comment on this article